login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A349522 Decimal expansion of Sum_{k>=2} 1/(k*log(k))^2. 0
6, 9, 2, 6, 0, 5, 8, 1, 4, 6, 7, 4, 2, 4, 9, 3, 2, 7, 5, 1, 3, 8, 6, 3, 9, 4, 8, 8, 6, 1, 9, 5, 6, 3, 0, 5, 4, 3, 5, 9, 2, 1, 7, 3, 3, 4, 9, 5, 1, 7, 2, 4, 9, 4, 3, 7, 5, 3, 9, 9, 0, 7, 6, 3, 3, 7, 2, 3, 8, 5, 5, 9, 9, 2, 1, 2, 9, 2, 6, 6, 8, 2, 1, 7, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Theorem: Bertrand series Sum_{n>=2} 1/(n^q*log(n)^r) is convergent if q > 1.

Application for q = 2 with A201994 (r=-2), A073002 (r=-1), A013661 (r=0), A168218 (r=1), this sequence (r=2).

LINKS

Table of n, a(n) for n=0..84.

Wikipédia, Série de Bertrand (in French).

Wikipedia, Joseph Bertrand.

FORMULA

Equals Sum_{k>=2} 1/(k*log(k))^2.

Equals Integral_{x>=2, y>=2} (zeta(x + y - 2) - 1) dx dy. - Amiram Eldar, Nov 21 2021

EXAMPLE

0.6926058...

PROG

(PARI) sumpos(k=2, 1/(k*log(k))^2) \\ Michel Marcus, Nov 21 2021

CROSSREFS

Cf. A013661, A073002, A168218, A201994.

Sequence in context: A309819 A309825 A289503 * A254135 A198676 A198616

Adjacent sequences: A349519 A349520 A349521 * A349523 A349524 A349525

KEYWORD

nonn,cons

AUTHOR

Bernard Schott, Nov 20 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 28 23:36 EST 2023. Contains 359905 sequences. (Running on oeis4.)