OFFSET
0,1
COMMENTS
Also the value of the integral of the fractional part of the Riemann zeta function from 2 to infinity. - Alexander Bock, Apr 01 2014
LINKS
R. P. Boas, Jr, Partial sums of Infinite Series, and How They Grow, Am. Math. Monthly 84 (4) (1977) 237-235 [MR0440240].
FORMULA
Equals Integral_{x>=2} (zeta(x) - 1) dx.
EXAMPLE
equals 1/(4*log(2))+1/(9*log(3))+1/(16*log(4))+ .... + = 0.605521788882600447699549005207240447303238898..
MATHEMATICA
(* Computation needs a few minutes for 105 digits *) digits = 105; NSum[ 1/(n^2*Log[n]), {n, 2, Infinity}, NSumTerms -> 500000, WorkingPrecision -> digits + 5, Method -> {"EulerMaclaurin", Method -> {"NIntegrate", "MaxRecursion" -> 12}}] // RealDigits[#, 10, digits] & // First (* Jean-François Alcover, Feb 11 2013 *)
RealDigits[NIntegrate[Zeta[x] - 1, {x, 2, Infinity}, WorkingPrecision->110], 10, 100] (* Alexander Bock, Apr 01 2014 *)
PROG
(PARI) intnum(x=2, [oo, log(2)], zeta(x)-1) \\ Charles R Greathouse IV, Apr 01 2014
(PARI) suminf(k=2, 1/k^2/log(k)) \\ Charles R Greathouse IV, Apr 01 2014
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
R. J. Mathar, Nov 20 2009
EXTENSIONS
More terms from Jean-François Alcover, Feb 11 2013
STATUS
approved