login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340576
Decimal expansion of Product_{primes p == 5 (mod 6)} 1/(1-1/p^2).
13
1, 0, 6, 0, 5, 4, 8, 2, 9, 3, 1, 6, 9, 1, 1, 0, 7, 2, 8, 1, 7, 4, 1, 2, 6, 3, 6, 4, 3, 0, 9, 8, 7, 2, 0, 3, 4, 9, 3, 0, 7, 7, 1, 3, 0, 2, 0, 4, 4, 8, 7, 1, 6, 3, 1, 2, 7, 9, 9, 4, 3, 7, 2, 1, 8, 1, 7, 9, 4, 6, 0, 8, 0, 2, 4, 4, 0, 6, 6, 3, 7, 4, 5, 9, 0, 3, 1, 6, 1, 4, 3, 8, 7, 6, 8, 5, 6, 3, 3, 5, 6, 5, 0, 1, 5
OFFSET
1,3
COMMENTS
The four similar sequences for products of primes mod 6 are these:
A175646 for Product_{primes p == 1 (mod 6)} 1/(1-1/p^2),
A340576 for Product_{primes p == 5 (mod 6)} 1/(1-1/p^2),
A340577 for Product_{primes p == 1 (mod 6)} 1/(1+1/p^2),
A340578 for Product_{primes p == 5 (mod 6)} 1/(1+1/p^2).
LINKS
R. J. Mathar, Table of Dirichlet L-series and prime zeta modulo functions for small moduli, arXiv:1008.2547 [math.NT], 2010-2015, Zeta_{6,5}(2) in section 3.2.
FORMULA
g = A143298 = (9 - PolyGamma(1, 2/3) + PolyGamma(1, 4/3))/(4 sqrt(3));
h = A301429;
Equals (3*sqrt(3)*h^2)/2.
Equals (3/4)*A333240.
A340577 = Pi^4/(243*g*h^2);
A340578 = (45*g*h^2)/(2*Pi^2).
Equals Pi^2/(9*A175646). - Artur Jasinski, Jan 11 2021
Equals Sum_{k>=1} 1/A259548(k)^2. - Amiram Eldar, Jan 24 2021
EXAMPLE
1.06054829316911072817412636430987203493077130204487163127994372...
MAPLE
a := n -> 3^(2^(-n-2))*((1-3^(-2^(n+1)))/2)^(2^(-n-1)):
b := n -> Zeta(n)/Im(polylog(n, (-1)^(2/3))):
c := n -> a(n)*b(2^(n+1))^(1/2^(n+1)):
Digits := 107: evalf((3/4)*mul(c(n), n=0..9)); # Peter Luschny, Jan 14 2021
MATHEMATICA
digits = 105;
precision = digits + 10;
prodeuler[p_, a_, b_, expr_] := Product[If[a <= p <= b, expr, 1], {p, Prime[Range[PrimePi[a], PrimePi[b]]]}];
Lv3[s_] := prodeuler[p, 1, 2^(precision/s), 1/(1 - KroneckerSymbol[-3, p]*p^-s)] // N[#, precision] &;
Lv4[s_] := 2*Im[PolyLog[s, Exp[2*I*Pi/3]]]/Sqrt[3];
Lv[s_] := If[s >= 10000, Lv3[s], Lv4[s]];
gv[s_] := (1 - 3^(-s))*Zeta[s]/Lv[s];
pB = (3/4)*Product[gv[2^n*2]^(2^-(n+1)), {n, 0, 11}] // N[#, precision]&;
RealDigits[pB, 10, digits][[1]] (* Most of this code is due to Artur Jasinski *)
S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]);
$MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Z[6, 5, 2], digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 15 2021 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved