login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340577
Decimal expansion of Product_{primes p == 1 (mod 6)} 1/(1+1/p^2).
12
9, 6, 7, 5, 5, 0, 4, 0, 2, 5, 1, 9, 5, 6, 1, 8, 8, 6, 6, 0, 9, 4, 7, 0, 7, 7, 0, 4, 3, 9, 0, 6, 7, 7, 3, 0, 0, 1, 5, 2, 4, 9, 1, 2, 9, 6, 0, 3, 0, 4, 3, 8, 6, 3, 5, 6, 3, 0, 2, 3, 9, 8, 0, 8, 4, 0, 6, 8, 7, 3, 9, 5, 1, 6, 3, 8, 3, 9, 9, 9, 4, 6, 1, 6, 0, 5, 4, 1, 7, 8, 7, 3, 7, 7, 4, 2, 2, 3, 6, 8, 7, 5, 9, 8, 1
OFFSET
0,1
FORMULA
Equals 1.0004615.../A175646, both constants taken from p 27 of arXiv:1008.2537v2. - R. J. Mathar, Aug 21 2022
EXAMPLE
0.96755040251956188660947077043906773001524912960304386356302398...
MATHEMATICA
digits = 105;
precision = digits + 5;
prodeuler[p_, a_, b_, expr_] := Product[If[a <= p <= b, expr, 1], {p, Prime[Range[PrimePi[a], PrimePi[b]]]}];
Lv3[s_] := prodeuler[p, 1, 2^(precision/s), 1/(1 - KroneckerSymbol[-3, p]*p^-s)] // N[#, precision]&;
Lv4[s_] := 2*Im[PolyLog[s, Exp[2*I*Pi/3]]]/Sqrt[3];
Lv[s_] := If[s >= 10000, Lv3[s], Lv4[s]];
gv[s_] := (1 - 3^(-s))*Zeta[s]/Lv[s];
pB = (3/4)*Product[gv[2^n*2]^(2^-(n+1)), {n, 0, 11}] // N[#, precision]&;
pC = (2*Pi^4)/(243*pB*Lv[2]);
RealDigits[pC, 10, digits][[1]](* Most of this code is due to Artur Jasinski *)
(* -------------------------------------------------------------------------- *)
S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]);
$MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Z[6, 1, 4]/Z[6, 1, 2], digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 15 2021 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
EXTENSIONS
a(104) corrected by Vaclav Kotesovec, Jan 15 2021
STATUS
approved