login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A248938
Decimal expansion of beta = G^2*(2/3)*Product_{prime p == 3 (mod 4)} (1 - 2/(p*(p-1)^2)) (where G is Catalan's constant), a constant related to the problem of integral Apollonian circle packings.
14
4, 6, 1, 2, 6, 0, 9, 0, 8, 6, 1, 3, 8, 6, 1, 3, 0, 3, 3, 2, 8, 5, 2, 9, 8, 4, 6, 4, 2, 4, 6, 0, 7, 5, 1, 5, 8, 0, 1, 3, 8, 3, 4, 4, 3, 7, 6, 5, 8, 8, 2, 0, 6, 3, 0, 0, 7, 0, 3, 9, 7, 7, 5, 1, 9, 0, 7, 1, 2, 8, 1, 6, 0, 7, 2, 2, 0, 7, 4, 9, 8, 3, 7, 9, 1, 0, 4, 2, 6, 0, 7, 2, 6, 2, 1, 4, 8, 0, 7, 2, 3, 1, 6, 3, 1, 6
OFFSET
0,1
LINKS
Steven R. Finch, Apollonian circles with integer curvatures, p. 6. [Cached copy, with permission of the author]
Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 256.
Elena Fuchs and Katherine Sanden, Some experiments with integral Apollonian circle packings, arXiv:1001.1406 [math.NT] p. 7.
Peter Sarnak, Integral Apollonian Packings, Princeton MAA Lecture - January, 2009, p. 21.
FORMULA
beta = (G^2/3)*A248930, where G is Catalan's constant A006752.
EXAMPLE
0.4612609086138613...
MATHEMATICA
kmax = 25; Clear[P]; Do[P[k] = Product[p = Prime[n]; If[Mod[p, 4] == 3 , 1 - 2/(p*(p - 1)^2) // N[#, 40]&, 1], {n, 1, 2^k}]; Print["P(", k, ") = ", P[k]], {k, 10, kmax}]; beta = Catalan^2*(2/3)*P[kmax]; RealDigits[beta, 10, 16] // First
(* -------------------------------------------------------------------------- *)
$MaxExtraPrecision = 1000; digits = 121;
f[p_] := (1 - 2/(p*(p - 1)^2));
coefs = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, 1000}], x]];
S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
m = 2; sump = 0; difp = 1; While[Abs[difp] > 10^(-digits - 5) || difp == 0, difp = coefs[[m]]*P[4, 3, m]; sump = sump + difp; m++];
RealDigits[Chop[N[2*Catalan^2/3 * Exp[sump], digits]], 10, digits - 1][[1]] (* Vaclav Kotesovec, Jan 16 2021 *)
KEYWORD
nonn,cons
AUTHOR
EXTENSIONS
More digits from Vaclav Kotesovec, Jun 27 2020
STATUS
approved