login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154748
Continued fraction for sqrt(sqrt(2) - 1), the radius vector of the point of bisection of the arc of the unit lemniscate (x^2 + y^2)^2 = x^2 - y^2 in the first quadrant.
6
0, 1, 1, 1, 4, 6, 1, 2, 2, 2, 1, 1, 6, 1, 179, 46, 1, 1, 3, 2, 1, 1, 3, 6, 3, 1, 1, 1, 1, 2, 1, 1, 56, 1, 1, 1, 1, 66, 1, 1, 2, 17, 8, 2, 7, 12, 1, 1, 8, 1, 2, 2, 1, 1, 2, 1, 12, 1, 2, 2, 2, 2, 1, 1, 1, 8, 1, 1, 1, 1, 2, 1, 2, 5, 1, 6, 8, 1, 1, 1, 2, 7, 1, 9, 1, 2
OFFSET
0,5
LINKS
EXAMPLE
Sqrt(sqrt(2) - 1) = 0.643594252905582624735443437418... = [0; 1, 1, 1, 4, 6, 1, 2, 2, 2, 1, 1, 6, ...].
MATHEMATICA
nmax = 1000; ContinuedFraction[ Sqrt[Sqrt[2] - 1], nmax + 1]
PROG
(PARI) contfrac(sqrt(sqrt(2) - 1)) \\ Michel Marcus, Dec 10 2016
(Magma) ContinuedFraction(Sqrt(Sqrt(2)-1)); // Vincenzo Librandi, Dec 10 2016
CROSSREFS
Cf. A154747, A154749 and A154750 for the decimal expansion and the numerators and denominators of the convergents.
Sequence in context: A107951 A019646 A238582 * A190282 A164833 A248938
KEYWORD
nonn,cofr,easy
AUTHOR
Stuart Clary, Jan 14 2009
STATUS
approved