OFFSET
1,1
COMMENTS
Lesser twin primes (with the exception of prime 3) are congruent to 5 modulo 6, which implies that distances between successive pairs of twin primes are 6*k.
LINKS
Martin Raab, Table of n, a(n) for n = 1..4508
FORMULA
a(n) = A052350(n) + 6*n.
EXAMPLE
a(1)=11 because 11 - 5 = 6*1.
a(2)=41 because 41 - 29 = 6*2.
a(3)=59 because 59 - 41 = 6*3.
MATHEMATICA
Table[a[n] = 0, {n, 1, 10000}]; Table[
b[n] = 0, {n, 1, 10000}]; qq = {}; prev = 5; Do[
If[Prime[n + 1] - Prime[n] == 2, k = (Prime[n] - prev)/6;
If[b[k] == 0, a[k] = Prime[n]; b[k] = 1]; prev = Prime[n]], {n, 5,
10000}]; list = Table[a[n], {n, 1, 50}]
(* Second program: *)
pp = Select[Prime[Range[10^4]], PrimeQ[#+2]&];
dd = Differences[pp];
a[n_] := pp[[FirstPosition[dd, 6n][[1]]+1]];
Array[a, 50] (* Jean-François Alcover, Jan 13 2021 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Jan 12 2021
STATUS
approved