login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340571
Number of partitions of n into 4 parts with at least one even part.
2
0, 0, 0, 0, 0, 1, 1, 3, 3, 6, 6, 11, 10, 18, 17, 27, 25, 39, 36, 54, 49, 72, 66, 94, 85, 120, 109, 150, 135, 185, 167, 225, 202, 270, 243, 321, 287, 378, 339, 441, 394, 511, 457, 588, 524, 672, 600, 764, 680, 864, 770, 972, 864, 1089, 969, 1215, 1079, 1350, 1200, 1495, 1326
OFFSET
0,8
FORMULA
a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} (1 - (k mod 2) * (j mod 2) * (i mod 2) * ((n-i-j-k) mod 2)).
a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} sign( ((k+1) mod 2) + ((j+1) mod 2) + ((i+1) mod 2) + ((n-i-j-k+1) mod 2) ).
EXAMPLE
a(5) = 1; [2,1,1,1];
a(7) = 3; [4,1,1,1], [3,2,1,1], [2,2,2,1];
a(9) = 6; [6,1,1,1], [5,2,1,1], [4,3,1,1], [4,2,2,1], [3,3,2,1], [3,2,2,2].
MATHEMATICA
Table[Sum[Sum[Sum[1 - Mod[k, 2] Mod[j, 2] Mod[i, 2] Mod[n - i - k - j, 2], {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 100}]
CROSSREFS
Sequence in context: A363241 A220153 A219627 * A131942 A240204 A200905
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jan 11 2021
STATUS
approved