The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A340572 Number of partitions of n into 4 parts with at least one prime part. 1
 0, 0, 0, 0, 0, 1, 2, 2, 5, 5, 8, 10, 13, 16, 21, 24, 31, 35, 41, 49, 57, 64, 75, 84, 95, 107, 119, 133, 147, 164, 179, 198, 215, 236, 256, 281, 300, 329, 349, 382, 407, 441, 465, 506, 531, 575, 603, 652, 681, 733, 765, 822, 853, 919, 952, 1019, 1057, 1128, 1166, 1247, 1284 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 LINKS FORMULA a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} sign( c(k) + c(j) + c(i) + c(n-i-j-k) ), where c is the prime characteristic (A010051). MAPLE b:= proc(n, i, t) option remember; series(      `if`(n=0, t, `if`(i<1, 0, expand(x*b(n-i, min(n-i, i),      `if`(isprime(i), 1, t)))+b(n, i-1, t))), x, 5)     end: a:= n-> coeff(b(n\$2, 0), x, 4): seq(a(n), n=0..60);  # Alois P. Heinz, Oct 24 2021 MATHEMATICA Table[Sum[Sum[Sum[Sign[(PrimePi[k] - PrimePi[k - 1]) + (PrimePi[j] - PrimePi[j - 1]) + (PrimePi[i] - PrimePi[i - 1]) + (PrimePi[n - i - j - k] - PrimePi[n - i - j - k - 1])], {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 100}] CROSSREFS Cf. A010051, A026810, A340571. Sequence in context: A340223 A073707 A238945 * A091609 A183563 A222706 Adjacent sequences:  A340569 A340570 A340571 * A340573 A340574 A340575 KEYWORD nonn AUTHOR Wesley Ivan Hurt, Jan 11 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 12:28 EST 2021. Contains 349596 sequences. (Running on oeis4.)