login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A183563 Number of partitions of n containing a clique of size 6. 13
1, 0, 1, 1, 2, 2, 5, 5, 8, 10, 15, 18, 27, 33, 47, 57, 78, 96, 129, 159, 208, 258, 330, 407, 517, 635, 798, 978, 1217, 1482, 1833, 2225, 2729, 3303, 4028, 4856, 5885, 7070, 8528, 10211, 12259, 14628, 17494, 20800, 24777, 29378, 34867 (list; graph; refs; listen; history; text; internal format)
OFFSET
6,5
COMMENTS
All parts of a number partition with the same value form a clique. The size of a clique is the number of elements in the clique.
LINKS
FORMULA
G.f.: (1-Product_{j>0} (1-x^(6*j)+x^(7*j))) / (Product_{j>0} (1-x^j)).
EXAMPLE
a(10) = 2, because 2 partitions of 10 contain (at least) one clique of size 6: [1,1,1,1,1,1,2,2], [1,1,1,1,1,1,4].
MAPLE
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0],
add((l->`if`(j=6, [l[1]$2], l))(b(n-i*j, i-1)), j=0..n/i)))
end:
a:= n-> (l-> l[2])(b(n, n)):
seq(a(n), n=6..55);
MATHEMATICA
max = 55; f = (1 - Product[1 - x^(6j) + x^(7j), {j, 1, max}])/Product[1 - x^j, {j, 1, max}]; s = Series[f, {x, 0, max}]; Drop[CoefficientList[s, x], 6] (* Jean-François Alcover, Oct 01 2014 *)
CROSSREFS
Sequence in context: A238945 A340572 A091609 * A222706 A240495 A304393
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jan 05 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 16 08:10 EDT 2024. Contains 374345 sequences. (Running on oeis4.)