login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304393
Expansion of Product_{k>0} (1 + Sum_{m>=0} x^(k*2^m)).
1
1, 1, 2, 2, 5, 5, 8, 10, 17, 19, 27, 33, 48, 56, 76, 92, 126, 146, 192, 228, 298, 352, 444, 528, 667, 783, 969, 1145, 1414, 1658, 2017, 2365, 2878, 3352, 4027, 4703, 5634, 6548, 7773, 9033, 10705, 12381, 14573, 16857, 19790, 22800, 26631, 30655, 35723, 41005
OFFSET
0,3
COMMENTS
Also the number of partitions of n in which each part occurs a power of 2 (cf. A000079) of times.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Seiichi Manyama)
EXAMPLE
n | Partitions of n in which each part occurs a power of 2 (cf. A000079) of times
--+------------------------------------------------------------------------------
1 | 1;
2 | 2 = 1+1;
3 | 3 = 2+1;
4 | 4 = 3+1 = 2+2 = 2+1+1 = 1+1+1+1;
5 | 5 = 4+1 = 3+2 = 3+1+1 = 2+2+1;
6 | 6 = 5+1 = 4+2 = 4+1+1 = 3+2+1 = 3+3 = 2+2+1+1 = 2+1+1+1+1;
7 | 7 = 6+1 = 5+2 = 5+1+1 = 4+3 = 4+2+1 = 3+3+1 = 3+2+2 = 3+2+1+1 = 3+1+1+1+1;
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+add(b(n-i*2^j, i-1), j=0..ilog2(n/i))))
end:
a:= n-> b(n$2):
seq(a(n), n=0..60); # Alois P. Heinz, May 13 2018
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0,
b[n, i-1] + Sum[b[n-i*2^j, i-1], {j, 0, Floor@Log2[n/i]}]]];
a[n_] := b[n, n];
Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Feb 14 2023, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 12 2018
STATUS
approved