OFFSET
0,4
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000
F. C. Auluck, K. S. Singwi and B. K. Agarwala, On a new type of partition, Proc. Nat. Inst. Sci. India 16 (1950) 147-156.
Steven Finch, Integer Partitions, September 22, 2004, page 5. [Cached copy, with permission of the author]
Daniel Herden, Mark R. Sepanski, Jonathan Stanfill, Cordell Hammon, Joel Henningsen, Henry Ickes, and Indalecio Ruiz, Partitions With Designated Summands Not Divisible by 2^L, 2, and 3^L Modulo 2, 4, and 3, arXiv:2101.04058 [math.CO], 2021. See also Integers (2023) Vol. 23, Art. No. A43.
James A. Sellers and Fabrizio Zanello, On the parity of the number of partitions with odd multiplicities, arXiv:2004.06204 [math.CO], 2020.
FORMULA
EULER transform of b where b has g.f. Sum {k>0} c(k)*x^k/(1-x^k) where c is inverse EULER transform of characteristic function of odd numbers.
G.f.: Product_{i>0} (1+x^i-x^(2*i))/(1-x^(2*i)). - Vladeta Jovovic, Feb 03 2004
Asymptotics (Auluck, Singwi, Agarwala, 1950): a(n) ~ B/(2*Pi*n) * exp(2*B*sqrt(n)), where B = sqrt(Pi^2/12 + 2*log(phi)^2), where phi is the golden ratio. - Vaclav Kotesovec, Oct 27 2014
EXAMPLE
There exist 11 partitions of 6. For six of these partitions, each part occurs an odd number times, they are 6 = 5 + 1 = 4 + 2 = 3 + 2 + 1 = 3 + 1+1+1 = 2+2+2, hence a(6) = 6. The five other partitions are 4 + 1+1 = 3+3 = 2+2 + 1+1 = 2 + 1+1+1+1 = 1+1+1+1+1+1.
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(`if`(irem(j, 2)=0, 0, b(n-i*j, i-1)), j=1..n/i)
+b(n, i-1)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..60); # Alois P. Heinz, May 31 2014
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[If[Mod[j, 2] == 0, 0, b[n-i*j, i-1]], {j, 1, n/i}] + b[n, i-1]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Feb 24 2015, after Alois P. Heinz *)
PROG
(PARI) { my(n=60); Vec(prod(k=1, n, 1 + sum(r=0, n\(2*k), x^(k*(2*r+1))) + O(x*x^n))) } \\ Andrew Howroyd, Dec 22 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Christian G. Bower, Jun 23 2000
STATUS
approved