login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A055922
Number of partitions of n in which each part occurs an odd number (or zero) times.
30
1, 1, 1, 3, 2, 5, 6, 9, 9, 16, 20, 25, 32, 40, 54, 69, 84, 101, 136, 156, 202, 244, 306, 357, 448, 527, 652, 773, 944, 1103, 1346, 1574, 1885, 2228, 2640, 3106, 3684, 4302, 5052, 5931, 6924, 8079, 9416, 10958, 12718, 14824, 17078, 19820, 22860, 26433
OFFSET
0,4
LINKS
F. C. Auluck, K. S. Singwi and B. K. Agarwala, On a new type of partition, Proc. Nat. Inst. Sci. India 16 (1950) 147-156.
Steven Finch, Integer Partitions, September 22, 2004, page 5. [Cached copy, with permission of the author]
Daniel Herden, Mark R. Sepanski, Jonathan Stanfill, Cordell Hammon, Joel Henningsen, Henry Ickes, and Indalecio Ruiz, Partitions With Designated Summands Not Divisible by 2^L, 2, and 3^L Modulo 2, 4, and 3, arXiv:2101.04058 [math.CO], 2021. See also Integers (2023) Vol. 23, Art. No. A43.
James A. Sellers and Fabrizio Zanello, On the parity of the number of partitions with odd multiplicities, arXiv:2004.06204 [math.CO], 2020.
FORMULA
EULER transform of b where b has g.f. Sum {k>0} c(k)*x^k/(1-x^k) where c is inverse EULER transform of characteristic function of odd numbers.
G.f.: Product_{i>0} (1+x^i-x^(2*i))/(1-x^(2*i)). - Vladeta Jovovic, Feb 03 2004
Asymptotics (Auluck, Singwi, Agarwala, 1950): a(n) ~ B/(2*Pi*n) * exp(2*B*sqrt(n)), where B = sqrt(Pi^2/12 + 2*log(phi)^2), where phi is the golden ratio. - Vaclav Kotesovec, Oct 27 2014
EXAMPLE
There exist 11 partitions of 6. For six of these partitions, each part occurs an odd number times, they are 6 = 5 + 1 = 4 + 2 = 3 + 2 + 1 = 3 + 1+1+1 = 2+2+2, hence a(6) = 6. The five other partitions are 4 + 1+1 = 3+3 = 2+2 + 1+1 = 2 + 1+1+1+1 = 1+1+1+1+1+1.
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(`if`(irem(j, 2)=0, 0, b(n-i*j, i-1)), j=1..n/i)
+b(n, i-1)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..60); # Alois P. Heinz, May 31 2014
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[If[Mod[j, 2] == 0, 0, b[n-i*j, i-1]], {j, 1, n/i}] + b[n, i-1]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Feb 24 2015, after Alois P. Heinz *)
PROG
(PARI) { my(n=60); Vec(prod(k=1, n, 1 + sum(r=0, n\(2*k), x^(k*(2*r+1))) + O(x*x^n))) } \\ Andrew Howroyd, Dec 22 2017
CROSSREFS
Column k=0 of A264399.
Sequence in context: A303764 A079973 A267150 * A194072 A194105 A194012
KEYWORD
nonn
AUTHOR
Christian G. Bower, Jun 23 2000
STATUS
approved