login
A249389
Decimal expansion of the constant 'B' appearing in the asymptotic expression of the number of partitions of n as (B/(2*Pi*n))*exp(2*B*sqrt(n)), in case of partitions into integers, each of which occurring only an odd number of times.
2
1, 1, 3, 3, 8, 4, 1, 5, 5, 6, 2, 0, 5, 4, 9, 6, 4, 6, 6, 7, 3, 3, 7, 6, 8, 6, 3, 2, 4, 6, 0, 5, 0, 1, 9, 3, 1, 2, 0, 6, 0, 2, 9, 6, 2, 8, 8, 0, 8, 6, 5, 4, 0, 1, 0, 4, 1, 7, 3, 8, 0, 6, 7, 2, 7, 8, 0, 8, 4, 7, 5, 5, 1, 2, 5, 9, 1, 7, 9, 4, 5, 8, 5, 8, 3, 6, 2, 1, 1, 9, 0, 6, 3, 3, 9, 5, 9, 6, 2
OFFSET
1,3
LINKS
F. C. Auluck, K. S. Singwi and B. K. Agarwala, On a new type of partition, Proc. Nat. Inst. Sci. India 16 (1950) 147-156.
Steven Finch, Integer Partitions, September 22, 2004. [Cached copy, with permission of the author]
FORMULA
B = sqrt(Pi^2/12 + 2*log(phi)^2), where phi is the golden ratio.
EXAMPLE
1.133841556205496466733768632460501931206029628808654...
MATHEMATICA
B = Sqrt[Pi^2/12 + 2*Log[GoldenRatio]^2]; RealDigits[B, 10, 99] // First
PROG
(PARI) sqrt(Pi^2/12 + 2*(log((1+sqrt(5))/2))^2) \\ G. C. Greubel, Apr 06 2017
CROSSREFS
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved