OFFSET
0,5
COMMENTS
T(n,0) = A055922(n).
Row sums give A000041. - Omar E. Pol, Nov 21 2015
LINKS
Alois P. Heinz, Rows n = 0..1000, flattened
FORMULA
G.f.: G(t,x) = Product_{j>=1} ((1 + x^j - x^(2j) + tx^(2j))/(1-x^(2j))).
EXAMPLE
T(6,1) = 4 because we have [4,1*,1], [3*,3], [2,1*,1,1,1], and [1*,1,1,1,1,1] (parts with even multiplicities are marked).
Triangle starts:
1;
1;
1, 1;
3;
2, 3;
5, 2;
6, 4, 1;
...
MAPLE
g := product(1+x^j/(1-x^(2*j))+t*x^(2*j)/(1-x^(2*j)), j = 1 .. 100): gser := simplify(series(g, x = 0, 30)): for n from 0 to 28 do P[n] := sort(coeff(gser, x, n)) end do: for n from 0 to 28 do seq(coeff(P[n], t, j), j = 0 .. degree(P[n])) end do; # yields sequence in triangular form
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
expand(`if`(j>0 and j::even, x, 1)*b(n-i*j, i-1)), j=0..n/i)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
seq(T(n), n=0..30); # Alois P. Heinz, Nov 25 2015
MATHEMATICA
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Expand[If[j>0 && EvenQ[ j], x, 1]*b[n-i*j, i-1]], {j, 0, n/i}]]]; T[n_] := Function[p, Table[ Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n]]; Table[T[n], {n, 0, 30}] // Flatten (* Jean-François Alcover, Dec 25 2015, after Alois P. Heinz *)
PROG
(PARI)
T(n) = { Vec(prod(k=1, n, (1+x^k-x^(2*k)+y*x^(2*k))/(1-x^(2*k)) + O(x*x^n))) }
{ my(t=T(10)); for(n=1, #t, print(Vecrev(t[n]))); } \\ Andrew Howroyd, Dec 22 2017
CROSSREFS
KEYWORD
AUTHOR
Emeric Deutsch, Nov 21 2015
STATUS
approved