login
A264398
Triangle read by rows: T(n,k) is the number of partitions of n having k parts with odd multiplicities.
4
1, 0, 1, 1, 1, 0, 2, 1, 2, 2, 1, 0, 4, 3, 3, 4, 3, 1, 0, 7, 7, 1, 5, 7, 7, 3, 0, 12, 14, 4, 7, 12, 14, 8, 1, 0, 19, 26, 10, 1, 11, 19, 26, 18, 3, 0, 30, 45, 22, 4, 15, 30, 45, 36, 9, 0, 45, 75, 44, 11, 1, 22, 45, 75, 67, 21, 1, 0, 67, 120, 81, 26, 3, 30, 67, 120, 119, 45, 4
OFFSET
0,7
COMMENTS
T(n,0) = A035363(n).
Row sums give A000041. - Omar E. Pol, Nov 21 2015
LINKS
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 30
FORMULA
G.f.: G(t,x) = Product_{j>=1} (1 + tx^j)/(1 - x^(2j)).
Sum_{k>0} k * T(n,k) = A209423(n). - Alois P. Heinz, Aug 05 2020
G.f.: A(x,y)*B(x^2) where A(x),B(x) are the o.g.f.'s for A008289 and A000041. (See Flajolet, Sedgewick link.) - Geoffrey Critzer, Aug 07 2022
EXAMPLE
T(6,1) = 4 because we have [6*], [4*,1,1],[2*,2,2], and [2*,1,1,1,1] (parts with odd multiplicities are marked).
Triangle starts:
1;
0, 1;
1, 1;
0, 2, 1;
2, 2, 1;
0, 4, 3;
3, 4, 3, 1;
...
MAPLE
g := product((1+t*x^j)/(1-x^(2*j)), j = 1 .. 100): gser := simplify(series(g, x = 0, 30)): for n from 0 to 28 do P[n] := sort(coeff(gser, x, n)) end do: for n from 0 to 23 do seq(coeff(P[n], t, j), j = 0 .. degree(P[n])) end do; # yields sequence in triangular form
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(expand(`if`(j::odd, x, 1)*b(n-i*j, i-1)), j=0..n/i)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
seq(T(n), n=0..20); # Alois P. Heinz, Nov 25 2015
MATHEMATICA
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Expand[If[OddQ[j], x, 1]* b[n-i*j, i-1]], {j, 0, n/i}]]]; T[n_] := Function[p, Table[Coefficient[ p, x, i], {i, 0, Exponent[p, x]}]][b[n, n]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Feb 18 2016, after Alois P. Heinz *)
PROG
(PARI)
T(n) = { Vec(prod(k=1, n, (1 + y*x^k)/(1 - x^(2*k)) + O(x*x^n))) }
{ my(t=T(10)); for(n=1, #t, print(Vecrev(t[n]))); } \\ Andrew Howroyd, Dec 22 2017
CROSSREFS
KEYWORD
nonn,look,tabf
AUTHOR
Emeric Deutsch, Nov 21 2015
STATUS
approved