login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A209423 Difference between the number of odd parts and the number of even parts in all the partitions of n. 10
1, 1, 4, 4, 10, 13, 24, 30, 52, 68, 105, 137, 202, 264, 376, 485, 669, 864, 1162, 1486, 1968, 2501, 3256, 4110, 5285, 6630, 8434, 10511, 13241, 16417, 20505, 25273, 31344, 38438, 47346, 57782, 70746, 85947, 104663, 126594, 153386, 184793, 222865, 267452 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

a(n) = number of parts of odd multiplicity (each counted only once) in all partitions of n. Example: a(5) = 10 because we have [5'],[4',1'],[3',2'], [3',1,1],[2,2,1'],[2',1',1,1], and [1',1,1,1,1] (the 10 counted parts are marked). - Emeric Deutsch, Feb 08 2016

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Alois P. Heinz)

FORMULA

a(n) = A066897(n) - A066898(n) = A206563(n,1) - A206563(n,2). - Omar E. Pol, Mar 08 2012

G.f.: Sum_{j>0} x^j/(1+x^j)/Product_{k>0}(1 - x^k). - Emeric Deutsch, Feb 08 2016

a(n) = Sum_{i=1..n} (-1)^(i + 1)*A181187(n, i). - John M. Campbell, Mar 18 2018

a(n) ~ log(2) * exp(Pi*sqrt(2*n/3)) / (2^(3/2) * Pi * sqrt(n)). - Vaclav Kotesovec, May 25 2018

For n > 0, a(n) = A305121(n) + A305123(n). - Vaclav Kotesovec, May 26 2018

EXAMPLE

The partitions of 5 are [5], [4,1], [3,2], [3,1,1], [2,2,1], [2,1,1,1], and [1,1,1,1,1], a total of 15 odd parts and 5 even parts, so that a(5)=10.

MAPLE

b:= proc(n, i) option remember; local m, f, g;

      m:= irem(i, 2);

      if n=0 then [1, 0, 0]

    elif i<1 then [0, 0, 0]

    else f:= b(n, i-1); g:= `if`(i>n, [0$3], b(n-i, i));

         [f[1]+g[1], f[2]+g[2]+m*g[1], f[3]+g[3]+(1-m)*g[1]]

      fi

    end:

a:= n-> b(n, n)[2] -b(n, n)[3]:

seq(a(n), n=1..50);  # Alois P. Heinz, Jul 09 2012

g := add(x^j/(1+x^j), j = 1 .. 80)/mul(1-x^j, j = 1 .. 80): gser := series(g, x = 0, 50): seq(coeff(gser, x, n), n = 0 .. 45); # Emeric Deutsch, Feb 08 2016

MATHEMATICA

f[n_, i_] := Count[Flatten[IntegerPartitions[n]], i]

o[n_] := Sum[f[n, i], {i, 1, n, 2}]

e[n_] := Sum[f[n, i], {i, 2, n, 2}]

Table[o[n], {n, 1, 45}]  (* A066897 *)

Table[e[n], {n, 1, 45}]  (* A066898 *)

%% - %                   (* A209423 *)

b[n_, i_] := b[n, i] = Module[{m, f, g}, m = Mod[i, 2]; If[n==0, {1, 0, 0}, If[i<1, {0, 0, 0}, f = b[n, i-1]; g = If[i>n, {0, 0, 0}, b[n-i, i]]; {f[[1]] + g[[1]], f[[2]] + g[[2]] + m*g[[1]], f[[3]] + g[[3]] + (1-m)* g[[1]]}]]]; a[n_] := b[n, n][[2]] - b[n, n][[3]]; Table[a[n], {n, 1, 50}] (* Jean-Fran├žois Alcover, Nov 16 2015, after Alois P. Heinz *)

CROSSREFS

Cf. A066897, A066898, A000041.

Sequence in context: A058596 A180964 A237668 * A185784 A185904 A201618

Adjacent sequences:  A209420 A209421 A209422 * A209424 A209425 A209426

KEYWORD

nonn

AUTHOR

Clark Kimberling, Mar 08 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 10:48 EDT 2018. Contains 315193 sequences. (Running on oeis4.)