This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A209423 Difference between the number of odd parts and the number of even parts in all the partitions of n. 11
 1, 1, 4, 4, 10, 13, 24, 30, 52, 68, 105, 137, 202, 264, 376, 485, 669, 864, 1162, 1486, 1968, 2501, 3256, 4110, 5285, 6630, 8434, 10511, 13241, 16417, 20505, 25273, 31344, 38438, 47346, 57782, 70746, 85947, 104663, 126594, 153386, 184793, 222865, 267452 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS a(n) = number of parts of odd multiplicity (each counted only once) in all partitions of n. Example: a(5) = 10 because we have [5'],[4',1'],[3',2'], [3',1,1],[2,2,1'],[2',1',1,1], and [1',1,1,1,1] (the 10 counted parts are marked). - Emeric Deutsch, Feb 08 2016 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Alois P. Heinz) FORMULA a(n) = A066897(n) - A066898(n) = A206563(n,1) - A206563(n,2). - Omar E. Pol, Mar 08 2012 G.f.: Sum_{j>0} x^j/(1+x^j)/Product_{k>0}(1 - x^k). - Emeric Deutsch, Feb 08 2016 a(n) = Sum_{i=1..n} (-1)^(i + 1)*A181187(n, i). - John M. Campbell, Mar 18 2018 a(n) ~ log(2) * exp(Pi*sqrt(2*n/3)) / (2^(3/2) * Pi * sqrt(n)). - Vaclav Kotesovec, May 25 2018 For n > 0, a(n) = A305121(n) + A305123(n). - Vaclav Kotesovec, May 26 2018 a(n) = Sum_{k=-floor(n/2)+(n mod 2)..n} k * A240009(n,k). - Alois P. Heinz, Oct 23 2018 EXAMPLE The partitions of 5 are [5], [4,1], [3,2], [3,1,1], [2,2,1], [2,1,1,1], and [1,1,1,1,1], a total of 15 odd parts and 5 even parts, so that a(5)=10. MAPLE b:= proc(n, i) option remember; local m, f, g;       m:= irem(i, 2);       if n=0 then [1, 0, 0]     elif i<1 then [0, 0, 0]     else f:= b(n, i-1); g:= `if`(i>n, [0\$3], b(n-i, i));          [f[1]+g[1], f[2]+g[2]+m*g[1], f[3]+g[3]+(1-m)*g[1]]       fi     end: a:= n-> b(n, n)[2] -b(n, n)[3]: seq(a(n), n=1..50);  # Alois P. Heinz, Jul 09 2012 g := add(x^j/(1+x^j), j = 1 .. 80)/mul(1-x^j, j = 1 .. 80): gser := series(g, x = 0, 50): seq(coeff(gser, x, n), n = 0 .. 45); # Emeric Deutsch, Feb 08 2016 MATHEMATICA f[n_, i_] := Count[Flatten[IntegerPartitions[n]], i] o[n_] := Sum[f[n, i], {i, 1, n, 2}] e[n_] := Sum[f[n, i], {i, 2, n, 2}] Table[o[n], {n, 1, 45}]  (* A066897 *) Table[e[n], {n, 1, 45}]  (* A066898 *) %% - %                   (* A209423 *) b[n_, i_] := b[n, i] = Module[{m, f, g}, m = Mod[i, 2]; If[n==0, {1, 0, 0}, If[i<1, {0, 0, 0}, f = b[n, i-1]; g = If[i>n, {0, 0, 0}, b[n-i, i]]; {f[[1]] + g[[1]], f[[2]] + g[[2]] + m*g[[1]], f[[3]] + g[[3]] + (1-m)* g[[1]]}]]]; a[n_] := b[n, n][[2]] - b[n, n][[3]]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Nov 16 2015, after Alois P. Heinz *) CROSSREFS Cf. A066897, A066898, A000041, A240009. Sequence in context: A058596 A180964 A237668 * A185784 A185904 A201618 Adjacent sequences:  A209420 A209421 A209422 * A209424 A209425 A209426 KEYWORD nonn AUTHOR Clark Kimberling, Mar 08 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 20 14:28 EST 2018. Contains 317402 sequences. (Running on oeis4.)