login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185904
Multiplication table for the tetrahedral numbers (A000292), by antidiagonals.
4
1, 4, 4, 10, 16, 10, 20, 40, 40, 20, 35, 80, 100, 80, 35, 56, 140, 200, 200, 140, 56, 84, 224, 350, 400, 350, 224, 84, 120, 336, 560, 700, 700, 560, 336, 120, 165, 480, 840, 1120, 1225, 1120, 840, 480, 165, 220, 660, 1200, 1680, 1960, 1960, 1680, 1200, 660, 220, 286, 880, 1650, 2400, 2940, 3136, 2940, 2400, 1650, 880, 286, 364, 1144, 2200, 3300, 4200, 4704, 4704, 4200, 3300, 2200, 1144, 364, 455, 1456, 2860, 4400, 5775, 6720, 7056, 6720, 5775, 4400, 2860, 1456, 455, 560, 1820, 3640, 5720, 7700, 9240, 10080, 10080, 9240, 7700, 5720, 3640, 1820, 560
OFFSET
1,2
COMMENTS
A member of the accumulation chain ... < A185906 < A000007 < A003991 < A098358 < A185904 < A185905 < ... (See A144112 for the definition of accumulation array.)
FORMULA
T(n,k) = binomial(k+2,3)*binomial(n+2,3), k >= 1, n >= 1.
EXAMPLE
Northwest corner:
1, 4, 10, 20, 35
4, 16, 40, 80, 140
10, 40, 100, 200, 350
20, 80, 200, 400, 700
MATHEMATICA
(* This program generates A098358 and its accumulation array, A185904. *)
TableForm[Table[f[n, k], {n, 1, 10}, {k, 1, 15}]] (* A098358 *)
Table[f[n-k+1, k], {n, 14}, {k, n, 1, -1}]//Flatten
s[n_, k_]:=Sum[f[i, j], {i, 1, n}, {j, 1, k}]; (* accumulation array of {f(n, k)} *)
FullSimplify[s[n, k]] (* formula for A185904 *)
TableForm[Table[s[n, k], {n, 1, 10}, {k, 1, 15}]] (* A185904 *)
Table[s[n-k+1, k], {n, 14}, {k, n, 1, -1}]//Flatten
T[n_, k_] := Binomial[k + 2, 3]*Binomial[n + 2, 3]; Table[T[n - k + 1, k], {n, 10}, {k, n, 1, -1}] // Flatten (* G. C. Greubel, Jul 22 2017 *)
CROSSREFS
Row 1 = Column 1 = A000292.
Sequence in context: A209423 A357620 A185784 * A201618 A341243 A050339
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Feb 06 2011
STATUS
approved