login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A185906 Weight array of A000007 (which has only one nonzero term and whose second accumulation array is the multiplication table for the positive integers), by antidiagonals. 4
1, -1, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1

COMMENTS

A member of the accumulation chain

... < A185906 < A000007 < A000012 < A003991 < A098358 < A185904 < A185905 < ..., which includes the multiplication table of the positive integers. (See A144112 for the definitions of weight array and accumulation array.)

LINKS

Table of n, a(n) for n=1..105.

FORMULA

T(1,1)=T(2,2)=1; T(1,2)=T(2,1)=-1; T(n,k)=0 for all other (n,k).

a(n) = (1-(-1)^(2^abs((n*(n-1)*(n-2)*(n-3)*(n-5)))))/2*(-1)^((2*n-1+(-1)^n)/4). - Luce ETIENNE, Jul 09 2015

a(n) = (-1)^floor(n/2)*sign(floor(5/n))-floor(n/4)*floor(4/n). - Wesley Ivan Hurt, Jul 10 2015

EXAMPLE

Northwest corner:

.1....-1....0....0....0....0....0

-1.....1....0....0....0....0....0

.0.....0....0....0....0....0....0

.0.....0....0....0....0....0....0

MAPLE

A185906:=n->(-1)^floor(n/2)*signum(floor(5/n))-floor(n/4)*floor(4/n): seq(A185906(n), n=1..300); # Wesley Ivan Hurt, Jul 10 2015

CROSSREFS

Cf. A144112, A000007.

Sequence in context: A281011 A230412 A212412 * A266178 A255738 A296209

Adjacent sequences:  A185903 A185904 A185905 * A185907 A185908 A185909

KEYWORD

tabl,sign

AUTHOR

Clark Kimberling, Feb 06 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 18 02:09 EST 2018. Contains 299297 sequences. (Running on oeis4.)