login
A185784
Accumulation array of A107985, by antidiagonals.
3
1, 4, 4, 10, 15, 10, 20, 36, 36, 20, 35, 70, 84, 70, 35, 56, 120, 160, 160, 120, 56, 84, 189, 270, 300, 270, 189, 84, 120, 280, 420, 500, 500, 420, 280, 120, 165, 396, 616, 770, 825, 770, 616, 396, 165, 220, 540, 864, 1120, 1260, 1260, 1120, 864, 540, 220, 286, 715, 1170, 1560, 1820, 1911, 1820, 1560, 1170, 715, 286, 364, 924, 1540, 2100, 2520, 2744, 2744, 2520, 2100, 1540, 924, 364, 455, 1170, 1980, 2750, 3375, 3780, 3920, 3780, 3375, 2750, 1980, 1170, 455, 560
OFFSET
1,2
COMMENTS
Let W be the array given by w(1,1)=1, w(2,2)=-1, and w(n,k)=0 for all other (n,k).
Write "A < B" to indicate that an array B is the accumulation array of A (defined at A144112). Then W < A103451 < A002024 < A107985 < A185784 < A185785 < A185786.
FORMULA
T(n,k) = (n+k+1)*C(n+1,2)*C(k+1,2)/3, k>=0, n>=0.
EXAMPLE
Northwest corner:
1....4....10....20....35
4....15...36....70....120
10...36...84....160...270
20...70...160...300...500
MATHEMATICA
(* The code generates arrays A107985, A185784, A002024. *)
f[n_, 0]:=0; f[0, k_]:=0; (* used to form A002024 *)
f[n_, k_]:=k*n(k+n)/2;
TableForm[Table[f[n, k], {n, 1, 10}, {k, 1, 15}]] (* A107985 *)
s[n_, k_]:=Sum[f[i, j], {i, 1, n}, {j, 1, k}]; (* accumulation array of {f(n, k)} *)
FullSimplify[s[n, k]]
TableForm[Table[s[n, k], {n, 1, 10}, {k, 1, 15}]] (* A185784 *)
Table[s[n-k+1, k], {n, 14}, {k, n, 1, -1}]//Flatten
w[m_, n_]:=f[m, n]+f[m-1, n-1]-f[m, n-1]-f[m-1, n]/; Or[m>0, n>0];
TableForm[Table[w[n, k], {n, 1, 10}, {k, 1, 15}]] (* A002024 *)
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Feb 03 2011
STATUS
approved