login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A185787 Sum of first k numbers in column k of the natural number array A000027; by antidiagonals. 12
1, 7, 25, 62, 125, 221, 357, 540, 777, 1075, 1441, 1882, 2405, 3017, 3725, 4536, 5457, 6495, 7657, 8950, 10381, 11957, 13685, 15572, 17625, 19851, 22257, 24850, 27637, 30625, 33821, 37232, 40865, 44727, 48825, 53166, 57757, 62605, 67717, 73100, 78761, 84707, 90945, 97482, 104325, 111481, 118957, 126760, 134897, 143375 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

This is one of many interesting sequences and arrays that stem from the natural number array A000027, of which a northwest corner is as follows:

  1....2.....4.....7...11...16...22...29...

  3....5.....8....12...17...23...30...38...

  6....9....13....18...24...31...39...48...

  10...14...19....25...32...40...49...59...

  15...20...26....33...41...50...60...71...

  21...27...34....42...51...61...72...84...

  28...35...43....52...62...73...85...98...

Blocking out all terms below the main diagonal leaves columns whose sums comprise A185787.  Deleting the main diagonal and then summing give A185787.  Analogous treatments to the left of the main diagonal give A100182 and A101165.  Further sequences obtained directly from this array are easily obtained using the following formula for the array: T(n,k)=n+(n+k-2)(n+k-1)/2.

Examples:

row 1:  A000124

row 2:  A022856

row 3:  A016028

row 4:  A145018

row 5:  A077169

col 1:  A000217

col 2:  A000096

col 3:  A034856

col 4:  A055998

col 5:  A046691

col 6:  A052905

col 7:  A055999

diag. (1,5,...) ...... A001844

diag. (2,8,...) ...... A001105

diag. (4,12,...)...... A046092

diag. (7,17,...)...... A056220

diag. (11,23,...) .... A132209

diag. (16,30,...) .... A054000

diag. (22,38,...) .... A090288

diag. (3,9,...) ...... A058331

diag. (6,14,...) ..... A051890

diag. (10,20,...) .... A005893

diag. (15,27,...) .... A097080

diag. (21,35,...) .... A093328

diag. (28,44,...) .... A147882

antidiagonal sums:  (1,5,15,34,...)=A006003=partial sums of A002817.

Let S(n,k) denote the n-th partial sum of column k.  Then

S(n,k)=n*(n^2+3k*n+3*k^2-6*k+5)/6.

S(n,1)=n(n+1)(n+2)/6

S(n,2)=n(n+1)(n+5)/6

S(n,3)=n(n+2)(n+7)/6

S(n,4)=n(n^2+12n+29)/6

S(n,5)=n(n+5)(n+10)/6

S(n,6)=n(n+7)(n+11)/6

S(n,7)=n(n+10)(n+11)/6

Weight array of T: A144112

Accumulation array of T: A185506

Second rectangular sum array of T: A185507

Third rectangular sum array of T: A185508

Fourth rectangular sum array of T: A185509

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

a(n)=n*(7*n^2-6*n+5)/6.

G.f.: x*(3*x^2+3*x+1)/(1-x)^4. - Vincenzo Librandi, Jul 04 2012

MATHEMATICA

f[n_, k_]:=n+(n+k-2)(n+k-1)/2;

s[k_]:=Sum[f[n, k], {n, 1, k}];

Factor[s[k]]

Table[s[k], {k, 1, 70}]  (* A185787 *)

CoefficientList[Series[(3*x^2+3*x+1)/(1-x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Jul 04 2012 *)

PROG

(MAGMA) [n*(7*n^2-6*n+5)/6: n in [1..50]]; // Vincenzo Librandi, Jul 04 2012

CROSSREFS

Cf. A000027, A185788, A100182, A101165, A079824.

Sequence in context: A118395 A118396 A193375 * A001845 A127765 A155305

Adjacent sequences:  A185784 A185785 A185786 * A185788 A185789 A185790

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Feb 03 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 28 19:06 EDT 2017. Contains 284246 sequences.