login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185788
Sum of the first k-1 numbers in the k-th column of the natural number array A000027, by antidiagonals.
3
0, 2, 12, 37, 84, 160, 272, 427, 632, 894, 1220, 1617, 2092, 2652, 3304, 4055, 4912, 5882, 6972, 8189, 9540, 11032, 12672, 14467, 16424, 18550, 20852, 23337, 26012, 28884, 31960, 35247, 38752, 42482, 46444, 50645, 55092, 59792, 64752, 69979, 75480, 81262, 87332, 93697, 100364, 107340, 114632, 122247, 130192, 138474
OFFSET
1,2
COMMENTS
See A185787.
FORMULA
a(n) = (n-1)*(7*n^2 - 11*n + 6)/6. - Corrected by Manfred Arens, Mar 11 2016
G.f.: x^2*(2+4*x+x^2) / (x-1)^4 . - R. J. Mathar, Aug 23 2012
EXAMPLE
Start from
1.....2....4.....7...11...16...22...29...
3.....5....8....12...17...23...30...38...
6.....9...13....18...24...31...39...48...
10...14...19....25...32...40...49...59...
15...20...26....33...41...50...60...71...
21...27...34....42...51...61...72...84...
28...35...43....52...62...73...85...98...
Block out all terms starting at and below the main diagonal then sum up the remaining terms.
.....2.....4.....7...11...16...22...29...
...........8....12...17...23...30...38...
................18...24...31...39...48...
.....................32...40...49...59...
..........................50...60...71...
...............................72...84...
....................................98...
MATHEMATICA
f[n_, k_]:=n+(n+k-2)(n+k-1)/2;
s[k_]:=Sum[f[n, k], {n, 1, k-1}];
Factor[s[k]]
Table[s[k], {k, 1, 70}]
Table[(n - 1)*(7*n^2 - 11*n + 6)/6, {n, 1, 50}] (* G. C. Greubel, Jul 12 2017 *)
PROG
(PARI) for(n=1, 50, print1((n-1)*(7*n^2 - 11*n + 6)/6, ", ")) \\ G. C. Greubel, Jul 12 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 03 2011
STATUS
approved