login
A201618
Number of n X 1 0..3 arrays with rows and columns lexicographically nondecreasing and every element equal to at least one horizontal or vertical neighbor.
1
0, 4, 4, 10, 16, 26, 40, 59, 84, 116, 156, 205, 264, 334, 416, 511, 620, 744, 884, 1041, 1216, 1410, 1624, 1859, 2116, 2396, 2700, 3029, 3384, 3766, 4176, 4615, 5084, 5584, 6116, 6681, 7280, 7914, 8584, 9291, 10036, 10820, 11644, 12509, 13416, 14366, 15360
OFFSET
1,2
COMMENTS
Column 1 of A201625.
LINKS
FORMULA
Empirical: a(n) = (1/6)*n^3 - n^2 + (35/6)*n - 9 for n>4.
For n > 4 the above empirical a(n) is equal to C(n-1,3) + 4C(n-2,1) that is the n-th coefficient in Taylor series of ((1-x+x^2)/(1-x))^4 at x=0. - Nikita Gogin, Jul 24 2013
Conjectures from Colin Barker, May 23 2018: (Start)
G.f.: x^2*(2 - 2*x + x^2)*(2 - 4*x + 4*x^2 - 2*x^3 + x^4) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>8.
(End)
EXAMPLE
Some solutions for n=10:
..1....0....0....2....1....1....1....0....0....0....0....1....2....0....0....0
..1....0....0....2....1....1....1....0....0....0....0....1....2....0....0....0
..1....0....2....2....1....1....1....0....0....1....1....1....3....0....1....0
..1....1....2....2....1....2....1....0....0....1....1....2....3....0....1....0
..2....1....3....2....1....2....1....0....1....3....1....2....3....0....2....2
..2....2....3....2....1....2....1....0....1....3....1....2....3....3....2....2
..2....2....3....2....1....3....2....2....1....3....1....2....3....3....3....2
..2....2....3....2....1....3....2....2....2....3....1....2....3....3....3....2
..2....3....3....3....2....3....3....2....2....3....1....2....3....3....3....2
..2....3....3....3....2....3....3....2....2....3....1....2....3....3....3....2
CROSSREFS
Sequence in context: A357620 A185784 A185904 * A341243 A050339 A087288
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 03 2011
STATUS
approved