OFFSET
1,4
COMMENTS
Also sum of all even-indexed parts minus the sum of all odd-indexed parts, except the largest parts, of all partitions of n (cf. A206563). - Omar E. Pol, Feb 14 2012
From Omar E. Pol, Apr 06 2023: (Start)
a(n) is also the total number of even divisors of all positive integers in a sequence with n blocks where the m-th block consists of A000041(n-m) copies of m, with 1 <= m <= n. The mentioned even divisors are also all even parts of all partitions of n. (End)
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Alois P. Heinz)
P. J. Grabner and A. Knopfmacher, Analysis of some new partition statistics, Ramanujan J., 12, 2006, 439-454.
FORMULA
a(n) = Sum_{k=1..floor{n/2)} tau(k)*numbpart(n-2*k). - Vladeta Jovovic, Jan 26 2002
a(n) = sum(k*A116482(n,k), k=0..floor(n/2)). - Emeric Deutsch, Feb 17 2006
G.f.: sum(x^(2j)/(1-x^(2j)), j=1..infinity)/product((1-x^j), j=1..infinity). - Emeric Deutsch, Feb 17 2006
a(n) ~ exp(Pi*sqrt(2*n/3)) * (2*gamma + log(3*n/(2*Pi^2))) / (8*Pi*sqrt(2*n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 25 2018
EXAMPLE
a(5) = 5 because in all the partitions of 5, namely [5], [4,1], [3,2], [3,1,1], [2,2,1], [2,1,1,1], [1,1,1,1,1], we have a total of 0+1+1+0+2+1+0=5 even parts.
MAPLE
g:=sum(x^(2*j)/(1-x^(2*j)), j=1..60)/product((1-x^j), j=1..60): gser:=series(g, x=0, 55): seq(coeff(gser, x, n), n=1..50); # Emeric Deutsch, Feb 17 2006
A066898 := proc(n)
add(numtheory[tau](k)*combinat[numbpart](n-2*k), k=1..n/2) ;
end proc: # R. J. Mathar, Jun 18 2016
MATHEMATICA
f[n_, i_] := Count[Flatten[IntegerPartitions[n]], i]
o[n_] := Sum[f[n, i], {i, 1, n, 2}]
e[n_] := Sum[f[n, i], {i, 2, n, 2}]
Table[o[n], {n, 1, 45}] (* A066897 *)
Table[e[n], {n, 1, 45}] (* A066898 *)
%% - % (* A209423 *)
(* Clark Kimberling, Mar 08 2012 *)
a[n_] := Sum[DivisorSigma[0, k] PartitionsP[n - 2k], {k, 1, n/2}]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Aug 31 2016, after Vladeta Jovovic *)
PROG
(Haskell)
a066898 = p 0 1 where
p e _ 0 = e
p e k m | m < k = 0
| otherwise = p (e + 1 - mod k 2) k (m - k) + p e (k + 1) m
-- Reinhard Zumkeller, Mar 09 2012
(Haskell)
a066898 = length . filter even . concat . ps 1 where
ps _ 0 = [[]]
ps i j = [t:ts | t <- [i..j], ts <- ps t (j - t)]
-- Reinhard Zumkeller, Jul 13 2013
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Naohiro Nomoto, Jan 24 2002
EXTENSIONS
More terms from Vladeta Jovovic, Jan 26 2002
STATUS
approved