login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Total number of even parts in all partitions of n.
24

%I #52 Apr 25 2023 20:00:08

%S 0,1,1,4,5,11,15,28,38,62,85,131,177,258,346,489,648,890,1168,1572,

%T 2042,2699,3475,4532,5783,7446,9430,12017,15106,19073,23815,29827,

%U 37011,46012,56765,70116,86033,105627,128962,157476,191359,232499,281286,340180,409871

%N Total number of even parts in all partitions of n.

%C Also sum of all even-indexed parts minus the sum of all odd-indexed parts, except the largest parts, of all partitions of n (cf. A206563). - _Omar E. Pol_, Feb 14 2012

%C From _Omar E. Pol_, Apr 06 2023: (Start)

%C Convolution of A000041 and A183063.

%C Convolution of A002865 and A362059.

%C a(n) is also the total number of even divisors of all positive integers in a sequence with n blocks where the m-th block consists of A000041(n-m) copies of m, with 1 <= m <= n. The mentioned even divisors are also all even parts of all partitions of n. (End)

%H Vaclav Kotesovec, <a href="/A066898/b066898.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Alois P. Heinz)

%H P. J. Grabner and A. Knopfmacher, <a href="https://www.math.tugraz.at/fosp/pdfs/tugraz_0087.pdf">Analysis of some new partition statistics</a>, Ramanujan J., 12, 2006, 439-454.

%F a(n) = Sum_{k=1..floor{n/2)} tau(k)*numbpart(n-2*k). - _Vladeta Jovovic_, Jan 26 2002

%F a(n) = sum(k*A116482(n,k), k=0..floor(n/2)). - _Emeric Deutsch_, Feb 17 2006

%F G.f.: sum(x^(2j)/(1-x^(2j)), j=1..infinity)/product((1-x^j), j=1..infinity). - _Emeric Deutsch_, Feb 17 2006

%F a(n) = A066897(n) - A209423(n) = A006128(n) - A066897(n). [_Reinhard Zumkeller_, Mar 09 2012]

%F a(n) = (A006128(n) - A209423(n))/2. - _Vaclav Kotesovec_, May 25 2018

%F a(n) ~ exp(Pi*sqrt(2*n/3)) * (2*gamma + log(3*n/(2*Pi^2))) / (8*Pi*sqrt(2*n)), where gamma is the Euler-Mascheroni constant A001620. - _Vaclav Kotesovec_, May 25 2018

%e a(5) = 5 because in all the partitions of 5, namely [5], [4,1], [3,2], [3,1,1], [2,2,1], [2,1,1,1], [1,1,1,1,1], we have a total of 0+1+1+0+2+1+0=5 even parts.

%p g:=sum(x^(2*j)/(1-x^(2*j)),j=1..60)/product((1-x^j),j=1..60): gser:=series(g,x=0,55): seq(coeff(gser,x,n),n=1..50); # _Emeric Deutsch_, Feb 17 2006

%p A066898 := proc(n)

%p add(numtheory[tau](k)*combinat[numbpart](n-2*k),k=1..n/2) ;

%p end proc: # _R. J. Mathar_, Jun 18 2016

%t f[n_, i_] := Count[Flatten[IntegerPartitions[n]], i]

%t o[n_] := Sum[f[n, i], {i, 1, n, 2}]

%t e[n_] := Sum[f[n, i], {i, 2, n, 2}]

%t Table[o[n], {n, 1, 45}] (* A066897 *)

%t Table[e[n], {n, 1, 45}] (* A066898 *)

%t %% - % (* A209423 *)

%t (* _Clark Kimberling_, Mar 08 2012 *)

%t a[n_] := Sum[DivisorSigma[0, k] PartitionsP[n - 2k], {k, 1, n/2}]; Table[a[n], {n, 1, 50}] (* _Jean-François Alcover_, Aug 31 2016, after _Vladeta Jovovic_ *)

%o (Haskell)

%o a066898 = p 0 1 where

%o p e _ 0 = e

%o p e k m | m < k = 0

%o | otherwise = p (e + 1 - mod k 2) k (m - k) + p e (k + 1) m

%o -- _Reinhard Zumkeller_, Mar 09 2012

%o (Haskell)

%o a066898 = length . filter even . concat . ps 1 where

%o ps _ 0 = [[]]

%o ps i j = [t:ts | t <- [i..j], ts <- ps t (j - t)]

%o -- _Reinhard Zumkeller_, Jul 13 2013

%Y Cf. A000005, A000041, A002865, A006128, A066897, A116482, A183063, A206563, A209423, A362059.

%Y Column 2 of A206563.

%K easy,nonn

%O 1,4

%A _Naohiro Nomoto_, Jan 24 2002

%E More terms from _Vladeta Jovovic_, Jan 26 2002