

A237668


Number of partitions of n such that some part is a sum of two or more other parts.


2



0, 0, 0, 0, 1, 1, 4, 4, 10, 13, 23, 27, 49, 60, 93, 115, 170, 210, 300, 370, 510, 632, 846, 1031, 1359, 1670, 2159, 2630, 3355, 4082, 5130, 6220, 7739, 9360, 11555, 13889, 16991, 20402, 24824, 29636, 35855, 42707, 51309, 60955, 72896, 86328, 102826, 121348
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,7


LINKS

Giovanni Resta, Table of n, a(n) for n = 0..100
Giovanni Resta, C program for computing a(0)a(100)


EXAMPLE

a(6) = 4 counts these partitions: 123, 1113, 1122, 11112.


MATHEMATICA

z = 20; m = Map[Count[Map[MemberQ[#, Apply[Alternatives, Map[Apply[Plus, #] &, DeleteDuplicates[DeleteCases[Subsets[#], _?(Length[#] < 2 &)]]]]] &, IntegerPartitions[#]], False] &, Range[z]]; PartitionsP[Range[z]]  m
(* Peter J. C. Moses, Feb 10 2014 *)


CROSSREFS

Cf. A237667, A179009.
Sequence in context: A182699 A058596 A180964 * A209423 A185784 A185904
Adjacent sequences: A237665 A237666 A237667 * A237669 A237670 A237671


KEYWORD

nonn


AUTHOR

Clark Kimberling, Feb 11 2014


EXTENSIONS

a(21)a(47) from Giovanni Resta, Feb 22 2014


STATUS

approved



