login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A237669
Number of prime parts in the partitions of 3n into 3 parts.
1
0, 5, 12, 17, 29, 35, 50, 59, 77, 87, 108, 120, 144, 156, 182, 198, 228, 243, 275, 292, 327, 346, 383, 402, 443, 465, 507, 531, 578, 601, 649, 674, 722, 748, 800, 829, 886, 915, 974, 1006, 1067, 1097, 1158, 1189, 1253, 1286, 1353, 1388, 1456, 1491, 1561
OFFSET
1,2
FORMULA
a(n) = A237264(n) + A236762(n) + A236758(n).
EXAMPLE
Count the primes in the partitions of 3n into 3 parts for a(n).
13 + 1 + 1
12 + 2 + 1
11 + 3 + 1
10 + 4 + 1
9 + 5 + 1
8 + 6 + 1
7 + 7 + 1
10 + 1 + 1 11 + 2 + 2
9 + 2 + 1 10 + 3 + 2
8 + 3 + 1 9 + 4 + 2
7 + 4 + 1 8 + 5 + 2
6 + 5 + 1 7 + 6 + 2
7 + 1 + 1 8 + 2 + 2 9 + 3 + 3
6 + 2 + 1 7 + 3 + 2 8 + 4 + 3
5 + 3 + 1 6 + 4 + 2 7 + 5 + 3
4 + 4 + 1 5 + 5 + 2 6 + 6 + 3
4 + 1 + 1 5 + 2 + 2 6 + 3 + 3 7 + 4 + 4
3 + 2 + 1 4 + 3 + 2 5 + 4 + 3 6 + 5 + 4
1 + 1 + 1 2 + 2 + 2 3 + 3 + 3 4 + 4 + 4 5 + 5 + 5
3(1) 3(2) 3(3) 3(4) 3(5) .. 3n
---------------------------------------------------------------------
0 5 12 17 29 .. a(n)
MATHEMATICA
Table[Sum[Sum[PrimePi[i] - PrimePi[i - 1], {i, n + Floor[j/2] + 1 - Floor[1/(j + 1)], n + 2 (j + 1)}], {j, 0, n - 2}] + Sum[i (PrimePi[i] - PrimePi[i - 1]), {i, n}] + Sum[(PrimePi[n + i] - PrimePi[n + i - 1]) (n - 2 i), {i, Floor[(n - 1)/2]}] + Sum[(PrimePi[i] - PrimePi[i - 1]) (2 n - 2 i + 1 - Floor[(n - i + 1)/2]), {i, n}], {n, 70}]
Table[Count[Flatten[IntegerPartitions[3 n, {3}]], _?PrimeQ], {n, 60}] (* Harvey P. Dale, Oct 16 2016 *)
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Feb 11 2014
STATUS
approved