login
A237666
Number of partitions of n that include a pair of consecutive integers.
3
0, 0, 0, 1, 1, 3, 3, 7, 9, 15, 20, 32, 40, 61, 78, 112, 142, 199, 250, 341, 428, 568, 710, 930, 1151, 1486, 1835, 2334, 2868, 3615, 4413, 5513, 6706, 8298, 10052, 12359, 14895, 18195, 21857, 26526, 31747, 38337, 45702, 54923, 65272, 78062, 92481, 110168, 130089
OFFSET
0,6
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
FORMULA
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*sqrt(3)*n). - Vaclav Kotesovec, Jan 28 2022
Conjecture: for n > 0, a(n) = A000041(n) - A116931(n). - Vaclav Kotesovec, Jan 28 2022
EXAMPLE
The qualifying partitions of 8 are 521, 431, 332, 421, 3221, 32111, 22211, 221111, 2111111, so that a(8) = 9.
MAPLE
g:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(g(n-i*j, i-1), j=0..n/i)))
end:
b:= proc(n, i, l) option remember; `if`(n=0 or i<1, 0,
b(n, i-1, 0) +add(`if`(i+1=l, g(n-i*j, i-1),
b(n-i*j, i-1, i)), j=1..n/i))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..60); # Alois P. Heinz, Feb 14 2014
MATHEMATICA
Map[Length[Cases[Map[Differences[DeleteDuplicates[#]] &, IntegerPartitions[#]], {___, -1, ___}]] &, Range[50]] (* Peter J. C. Moses, Feb 09 2014 *)
g[n_, i_] := g[n, i] = If[n==0, 1, If[i<1, 0, Sum[g[n-i*j, i-1], {j, 0, n/i}]]]; b[n_, i_, l_] := b[n, i, l] = If[n==0 || i<1, 0, b[n, i-1, 0] + Sum[If[i+1 == l, g[n-i*j, i-1], b[n-i*j, i-1, i]], {j, 1, n/i}]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Sep 01 2016, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A375404 A206433 A301589 * A285187 A034411 A258289
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 11 2014
STATUS
approved