login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246810
a(n) is the smallest number m such that np(m) = n, where np(m) is number of primes p such that prime(m) < p < prime(m)^(1 + 1/m).
5
1, 5, 12, 17, 25, 55, 83, 169, 207, 206, 384, 953, 1615, 2192, 2197, 3024, 3023, 10709, 10935, 29509, 29508, 62736, 62735, 94333, 94332, 196966, 314940, 608777, 1258688, 1767259, 2448975, 2448973, 7939362, 9373136, 9373134, 16854966, 16854967
OFFSET
1,2
COMMENTS
Firoozbakht's conjecture says that for every n, there exists at least one prime p where, prime(n) < p < prime(n)^(1 + 1/n). Hence if Firoozbakht's conjecture is true, then there is no m such that np(m) = 0.
Conjecture: For every positive integer n, a(n) exists.
a(65) > 10^12. - Robert Price, Nov 12 2014
LINKS
A. Kourbatov, Upper bounds for prime gaps related to Firoozbakht's conjecture, J. Int. Seq. 18 (2015) 15.11.2
Nilotpal Kanti Sinha, On a new property of primes that leads to a generalization of Cramer's conjecture, arXiv:1010.1399v2 [math.NT], 2010.
EXAMPLE
a(6) = 55 since the number of primes p such that prime(55) < p < prime(55)^(1 + 1/55) is 6 and 55 is the smallest number with this property.
MATHEMATICA
np[n_]:=(b=Prime[n]; Length[Select[Range[b+1, b^(1 + 1/n)], PrimeQ]]); a[n_]:=(For[m=1, np[m] !=n, m++]; m);
Do[Print[a[n]], {n, 37}]
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved