login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182134
Number of primes p such that prime(n) < p < prime(n)^(1 + 1/n).
26
1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 3, 3, 2, 2, 3, 4, 3, 4, 3, 3, 2, 2, 4, 5, 4, 3, 2, 2, 2, 3, 4, 4, 3, 4, 4, 4, 4, 3, 4, 5, 4, 4, 3, 2, 2, 4, 5, 5, 4, 4, 4, 3, 5, 6, 5, 5, 4, 3, 3, 2, 4, 4, 4, 3, 2, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 5, 6, 5, 7, 6, 6, 5, 5, 5, 5, 4, 4, 5, 4, 5, 4, 3, 3, 3, 3, 5, 5, 5, 5, 6, 5
OFFSET
1,5
COMMENTS
Firoozbakht's conjecture: prime(n+1)^(1/(n+1)) < prime(n)^(1/n), for all n >= 1.
According to Firoozbakht's conjecture, all terms of this sequence are positive. - Jahangeer Kholdi, Jul 30 2014
Conjecture: a(n)=1 only for n = 1, 2, 3, 4, and 8. - Farideh Firoozbakht, Oct 18 2014
See A246782 and A246781 for indices such that a(n)=2 resp. a(n)=3. - M. F. Hasler, Oct 19 2014
Length of n-th row in A244365; a(n) = A001221(A245722(n)). - Reinhard Zumkeller, Nov 18 2014
a(n) = 2 for n = 5, 6, 7, 9, 10, 11, 14, 15, 22, 23, 28, 29, 30, 45, 46, 61, 66, 216, 217, 367, 3793, 1319945, ... = A246782. - Robert G. Wilson v, Feb 20 2015
a(n) = 3 for n = 12, 13, 16, 18, 20, 21, 27, 31, 34, 39, 44, 53, 59, 60, 65, 96, 97, 98, 99, 136, 154, 202, ... = A246781. - Robert G. Wilson v, Feb 20 2015
First occurrence of k: 1, 5, 12, 17, 25, 55, 83, 169, 207, 206, 384, 953, ... = A246810. - Robert G. Wilson v, Feb 20 2015
Conjecture: lim sup n->oo a(n) = oo. - John W. Nicholson, Feb 28 2015
a(n) is unbounded (that is, the above conjecture is true). In particular, there is a constant c > 1 such that a(n) > c log n infinitely often (by Maier's theorem). - Thomas Ordowski and Charles R Greathouse IV, Apr 09 2015
LINKS
Alexei Kourbatov, Verification of the Firoozbakht conjecture for primes up to four quintillion, arXiv:1503.01744 [math.NT], 2015.
Alexei Kourbatov, Upper Bounds for Prime Gaps Related to Firoozbakht’s Conjecture, arXiv:1506.03042 [math.NT], 2015.
Alexei Kourbatov, Upper bounds for prime gaps related to Firoozbakht's conjecture, J. Int. Seq. 18 (2015) 15.11.2.
FORMULA
a(n) = Sum_{m=A000040(n+1)..A249669(n)} A010051(m). - Reinhard Zumkeller, Nov 16 2014
a(n) = primepi(prime(n)^(1+1/n)) - n (see PARI program). - John W. Nicholson, Feb 11 2015
EXAMPLE
a(25) = 5, because p(25) = 97 and there are 5 primes p such that 97 < p < 97^(1 + 1/25) = 121.9299290...: 101, 103, 107, 109, 113.
MAPLE
a:= n-> numtheory[pi](ceil(ithprime(n)^(1+1/n))-1)-n:
seq(a(n), n=1..100); # Alois P. Heinz, Apr 21 2012
MATHEMATICA
Table[i = Prime[n] + 1; j = Floor[Prime[n]^(1 + 1/n)]; Length[Select[Range[i, j], PrimeQ]], {n, 100}] (* T. D. Noe, Apr 21 2012 *)
f[n_] := PrimePi[ Prime[n]^(1 + 1/n)] - n; Array[f, 105] (* Robert G. Wilson v, Feb 20 2015 *)
PROG
(PARI) A182134(n)=primepi(prime(n)^(1+1/n))-n \\ M. F. Hasler, Nov 03 2014
(Haskell)
a182134 = length . a244365_row -- Reinhard Zumkeller, Nov 16 2014
(Python)
from sympy import primepi, prime
def a(n): return primepi(prime(n)**(1 + 1/n)) - n # Indranil Ghosh, Apr 23 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Thomas Ordowski, Apr 20 2012
EXTENSIONS
More terms from Alois P. Heinz, Apr 21 2012
STATUS
approved