login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308176
Number of factors when x^3-x-1 is factorized mod the n-th prime.
1
1, 1, 2, 2, 2, 1, 2, 2, 3, 1, 1, 2, 1, 2, 1, 2, 3, 2, 2, 1, 1, 2, 2, 2, 2, 3, 2, 2, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 3, 3, 1, 2, 2, 1, 1, 2, 3, 3, 2, 2, 1, 1, 2, 2, 1, 2, 1, 3, 1, 2, 2, 2, 3, 1, 2, 3, 1, 2, 3, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 1, 1, 3
OFFSET
1,3
REFERENCES
M. Pohst and H. Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge, 1989; see page 131.
LINKS
EXAMPLE
The first few factorization are:
n, p, factors
1, 2, x^3+x+1
2, 3, x^3+2*x+2
3, 5, (x+3)*(x^2+2*x+3)
4, 7, (x+2)*(x^2+5*x+3)
5, 11, (x+5)*(x^2+6*x+2)
6, 13, x^3+12*x+12
7, 17, (x^2+5*x+7)*(x+12)
8, 19, (x^2+6*x+16)*(x+13)
9, 23, (x+20)*(x+13)^2
10, 29, x^3+28*x+28
11, 31, x^3+30*x+30
12, 37, (x^2+13*x+20)*(x+24)
...
MAPLE
p:=x^3-x-1;
f:=n->Factor(p) mod ithprime(n);
for n from 1 to 20 do lprint(n, ithprime(n), f(n)); od:
MATHEMATICA
a[n_] := Total[Last /@ FactorList[x^3-x-1, Modulus -> Prime[n]]] - 1; Array[a, 100] (* Giovanni Resta, May 28 2019 *)
PROG
(PARI) a(n) = vecsum(factor((x^3-x-1)*Mod(1, prime(n)))[, 2]); \\ Michel Marcus, May 28 2019
CROSSREFS
Sequence in context: A116858 A182134 A189684 * A354257 A106493 A309981
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 26 2019
EXTENSIONS
More terms from Giovanni Resta, May 28 2019
STATUS
approved