login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106493
Total number of bases and exponents in GF(2)[X] Superfactorization of n, excluding the unity-exponents at the tips of branches.
6
0, 1, 1, 2, 2, 2, 1, 2, 2, 3, 1, 3, 1, 2, 2, 3, 3, 3, 1, 4, 2, 2, 2, 3, 1, 2, 3, 3, 2, 3, 1, 3, 2, 4, 2, 4, 1, 2, 3, 4, 1, 3, 2, 3, 3, 3, 1, 4, 2, 2, 3, 3, 2, 4, 1, 3, 3, 3, 1, 4, 1, 2, 3, 3, 4, 3, 1, 5, 2, 3, 2, 4, 1, 2, 3, 3, 2, 4, 2, 5, 2, 2, 3, 4, 3, 3, 1, 3, 2, 4, 1, 4, 2, 2, 3, 4, 1, 3, 3, 3, 3, 4
OFFSET
1,4
COMMENTS
GF(2)[X] Superfactorization proceeds in a manner analogous to normal superfactorization explained in A106490, but using factorization in domain GF(2)[X], instead of normal integer factorization in N.
EXAMPLE
a(64) = 3, as 64 = A048723(2,6) = A048723(2,(A048723(2,1) X A048723(3,1))) and there are three non-1 nodes in that superfactorization. Similarly, for 27 = 5x7 = A048723(3,2) X A048273(7,1) we get a(27) = 3. The operation X stands for GF(2)[X] multiplication defined in A048720, while A048723(n,y) raises the n-th GF(2)[X] polynomial to the y:th power.
CROSSREFS
a(n) = A106490(A106445(n)). a(n) = A106494(n)-A106495(n).
Sequence in context: A189684 A308176 A354257 * A309981 A083338 A241900
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 09 2005
STATUS
approved