OFFSET
0,9
LINKS
Alois P. Heinz, Antidiagonals n = 0..150, flattened
FORMULA
a(n) = Xpower( (n-((trinv(n)*(trinv(n)-1))/2)), (((trinv(n)-1)*(((1/2)*trinv(n))+1))-n) );
EXAMPLE
1 0 0 0 0 0 0 0 0 ...
1 1 1 1 1 1 1 1 1 ...
1 2 4 8 16 32 64 128 256 ...
1 3 5 15 17 51 85 255 257 ...
1 4 16 64 256 1024 4096 16384 65536 ...
MAPLE
# Xmult and trinv have been given in A048720.
Xpower := proc(nn, mm) option remember; if(0 = mm) then RETURN(1); # By definition, also 0^0 = 1. else RETURN(Xmult(nn, Xpower(nn, mm-1))); fi; end;
MATHEMATICA
trinv[n_] := Floor[(1 + Sqrt[1 + 8*n])/2];
Xmult[nn_, mm_] := Module[{n = nn, m = mm, s = 0}, While[n > 0, If[1 == Mod[n, 2], s = BitXor[s, m]]; n = Floor[n/2]; m = m*2]; s];
Xpower[nn_, mm_] := Xpower[nn, mm] = If[0 == mm, 1, Xmult[nn, Xpower[nn, mm - 1]]];
a[n_] := Xpower[n - (trinv[n]*(trinv[n] - 1))/2, (trinv[n] - 1)*((1/2)* trinv[n] + 1) - n];
Table[a[n], {n, 0, 65}] (* Jean-François Alcover, Mar 04 2016, adapted from Maple *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Apr 26 1999
STATUS
approved