The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A048723 Binary "exponentiation" without carries: {0..y}^{0..x}, where y (column index) is binary encoding of GF(2)-polynomial and x (row index) is the exponent. 21
 1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 3, 1, 0, 1, 8, 5, 4, 1, 0, 1, 16, 15, 16, 5, 1, 0, 1, 32, 17, 64, 17, 6, 1, 0, 1, 64, 51, 256, 85, 20, 7, 1, 0, 1, 128, 85, 1024, 257, 120, 21, 8, 1, 0, 1, 256, 255, 4096, 1285, 272, 107, 64, 9, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 LINKS FORMULA a(n) = Xpower( (n-((trinv(n)*(trinv(n)-1))/2)), (((trinv(n)-1)*(((1/2)*trinv(n))+1))-n) ); EXAMPLE 1 0 0 0 0 0 0 0 0 ... 1 1 1 1 1 1 1 1 1 ... 1 2 4 8 16 32 64 128 256 ... 1 3 5 15 17 51 85 255 257 ... 1 4 16 64 256 1024 4096 16384 65536 ... MAPLE # Xmult and trinv have been given in A048720. Xpower := proc(nn, mm) option remember; if(0 = mm) then RETURN(1); # By definition, also 0^0 = 1. else RETURN(Xmult(nn, Xpower(nn, mm-1))); fi; end; MATHEMATICA trinv[n_] := Floor[(1 + Sqrt[1 + 8*n])/2]; Xmult[nn_, mm_] := Module[{n = nn, m = mm, s = 0}, While[n > 0, If[1 == Mod[n, 2], s = BitXor[s, m]]; n = Floor[n/2]; m = m*2]; s]; Xpower[nn_, mm_] := Xpower[nn, mm] = If[0 == mm, 1, Xmult[nn, Xpower[nn, mm - 1]]]; a[n_] := Xpower[n - (trinv[n]*(trinv[n] - 1))/2, (trinv[n] - 1)*((1/2)* trinv[n] + 1) - n]; Table[a[n], {n, 0, 65}] (* Jean-François Alcover, Mar 04 2016, adapted from Maple *) CROSSREFS Cf. ordinary power table A004248 and A034369, A034373. Cf. A048710. Row 3: A001317, Row 5: A038183 (bisection of row 3), Row 7: A038184. Column 2: A000695, diagonal of A048720. Diagonal: A048731. Sequence in context: A055340 A058716 A119328 * A088455 A004248 A034373 Adjacent sequences:  A048720 A048721 A048722 * A048724 A048725 A048726 KEYWORD nonn,tabl AUTHOR Antti Karttunen, Apr 26 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 23 13:52 EST 2020. Contains 331171 sequences. (Running on oeis4.)