login
A361390
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) is carryless n^k base 10.
1
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 3, 1, 0, 1, 8, 9, 4, 1, 0, 1, 6, 7, 6, 5, 1, 0, 1, 2, 1, 4, 5, 6, 1, 0, 1, 4, 3, 6, 5, 6, 7, 1, 0, 1, 8, 9, 4, 5, 6, 9, 8, 1, 0, 1, 6, 7, 6, 5, 6, 3, 4, 9, 1, 0, 1, 2, 1, 4, 5, 6, 1, 2, 1, 10, 1, 0, 1, 4, 3, 6, 5, 6, 7, 6, 9, 100, 11, 1, 0, 1, 8, 9, 4, 5, 6, 9, 8, 1, 1000, 121, 12, 1
OFFSET
0,9
EXAMPLE
4 * 4 = 16, so T(4,2) = 6. 6 * 4 = 24, so T(4,3) = 4.
Square array begins:
1, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 4, 8, 6, 2, 4, 8, ...
1, 3, 9, 7, 1, 3, 9, 7, ...
1, 4, 6, 4, 6, 4, 6, 4, ...
1, 5, 5, 5, 5, 5, 5, 5, ...
1, 6, 6, 6, 6, 6, 6, 6, ...
1, 7, 9, 3, 1, 7, 9, 3, ...
PROG
(PARI) T(n, k) = fromdigits(Vec(Pol(digits(n))^k)%10);
CROSSREFS
Columns k=0..4 give A000012, A001477, A059729, A169885, A169886.
Rows n=0..4 give A000007, A000012, A000689, A001148, A168428.
T(11,k) gives A059734.
Main diagonal gives A361351.
Sequence in context: A048723 A364386 A088455 * A369326 A369324 A004248
KEYWORD
nonn,tabl,base
AUTHOR
Seiichi Manyama, Mar 10 2023
STATUS
approved