The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A048724 Write n and 2n in binary and add them mod 2. 58
 0, 3, 6, 5, 12, 15, 10, 9, 24, 27, 30, 29, 20, 23, 18, 17, 48, 51, 54, 53, 60, 63, 58, 57, 40, 43, 46, 45, 36, 39, 34, 33, 96, 99, 102, 101, 108, 111, 106, 105, 120, 123, 126, 125, 116, 119, 114, 113, 80, 83, 86, 85, 92, 95, 90, 89, 72, 75, 78, 77, 68, 71, 66, 65, 192 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Reversing binary representation of -n. Converting sum of powers of 2 in binary representation of a(n) to alternating sum gives -n. Note that the alternation is applied only to the nonzero bits and does not depend on the exponent of two. All integers have a unique reversing binary representation (see cited exercise for proof). Complement of A065621. - Marc LeBrun, Nov 07 2001 A permutation of the "evil" numbers A001969. - Marc LeBrun, Nov 07 2001 A048725(n) = a(a(n)). - Reinhard Zumkeller, Nov 12 2004 REFERENCES D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 2, p. 178, (exercise 4.1. Nr. 27) LINKS T. D. Noe, Table of n, a(n) for n = 0..1023 H. D. Nguyen, A mixing of Prouhet-Thue-Morse sequences and Rademacher functions, 2014. See Example 20. - N. J. A. Sloane, May 24 2014 R. Stephan, Some divide-and-conquer sequences ... R. Stephan, Table of generating functions FORMULA a(n) = Xmult(n, 3) (or n XOR (n<<1)). a(n) = A065621(-n). a(2n) = 2a(n), a(2n+1) = 2a(n) + 2(-1)^n + 1. G.f. 1/(1-x) * sum(k>=0, 2^k*(3t-t^3)/(1+t)/(1+t^2), t=x^2^k). - Ralf Stephan, Sep 08 2003 a(n) = sum(k=0, n, (1-(-1)^round(+n/2^k))/2*2^k). - Benoit Cloitre, Apr 27 2005 a(n) = A001969(A003188(n)). - Philippe Deléham, Apr 29 2005 a(n) = A106409(2*n) for n>0. - Reinhard Zumkeller, May 02 2005 a(n) = A142149(2*n). - Reinhard Zumkeller, Jul 15 2008 EXAMPLE 12 = 1100 in binary, 24=11000 and their sum is 10100=20, so a(12)=20. a(4) = 12 = + 8 + 4 -> - 8 + 4 = -4. MAPLE a:= n-> Bits[Xor](n, n+n): seq(a(n), n=0..100);  # Alois P. Heinz, Apr 06 2016 MATHEMATICA Table[ BitXor[2n, n], {n, 0, 65}] (* Robert G. Wilson v, Jul 06 2006 *) PROG (PARI) a(n)=bitxor(n, 2*n) \\ Charles R Greathouse IV, Jan 04 2013 (Haskell) import Data.Bits (xor, shiftL) a048724 n = n `xor` shiftL n 1 :: Integer -- Reinhard Zumkeller, Mar 06 2013 CROSSREFS Cf. A048720, A048725, A048726, A048728. Bisection of A003188. See also A065620, A065621. Cf. A242399. Sequence in context: A246979 A246980 A095359 * A292682 A328403 A199126 Adjacent sequences:  A048721 A048722 A048723 * A048725 A048726 A048727 KEYWORD nonn,nice,look,easy AUTHOR Antti Karttunen, Apr 26 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 3 19:43 EDT 2020. Contains 333198 sequences. (Running on oeis4.)