|
|
A249669
|
|
a(n) = floor(prime(n)^(1+1/n)).
|
|
8
|
|
|
4, 5, 8, 11, 17, 19, 25, 27, 32, 40, 42, 49, 54, 56, 60, 67, 74, 76, 83, 87, 89, 96, 100, 107, 116, 120, 122, 126, 128, 132, 148, 152, 159, 160, 171, 173, 179, 186, 190, 196, 203, 204, 215, 217, 221, 223, 236, 249, 253, 255, 259, 265, 267, 278, 284, 290, 296, 298, 304, 308, 310, 321
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Firoozbakht's conjecture (prime(n)^(1/n) is a decreasing function), is equivalent to say that prime(n+1) <= a(n). (One has equality for n=2 and n=4.) See also A182134 and A245396.
This is not A059921 o A000040, i.e., a(n) != A059921(prime(n)), since the base is prime(n) but the exponent is n.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = prime(n) + (log(prime(n)))^2 - log(prime(n)) + O(1), see arXiv:1506.03042, Theorem 5. - Alexei Kourbatov, Nov 26 2015
|
|
MAPLE
|
seq(floor(ithprime(n)^(1+1/n)), n=1..100); # Robert Israel, Nov 26 2015
|
|
PROG
|
(PARI) a(n)=prime(n)^(1+1/n)\1
(Magma) [Floor(NthPrime(n)^(1+1/n)): n in [1..70]]; // Vincenzo Librandi, Nov 04 2014
(Haskell)
a249669 n = floor $ fromIntegral (a000040 n) ** (1 + recip (fromIntegral n))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|