login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A237670
Inverse Moebius transform of Catalan numbers.
1
1, 3, 6, 17, 43, 140, 430, 1447, 4868, 16841, 58787, 208166, 742901, 2674872, 9694893, 35359117, 129644791, 477643702, 1767263191, 6564137275, 24466267455, 91482622429, 343059613651, 1289904356920, 4861946401495, 18367353815055, 69533550920872
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{d|n} binomial(2*d,d)/(d+1).
G.f.: Sum_{k>=1} (1-2*x^k-sqrt(1-4*x^k))/(2*x^k).
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(binomial(2*k,k)/(k*(k+1)))) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 20 2018
MATHEMATICA
Table[Sum[Binomial[2 d, d]/(d + 1), {d, Divisors[n]}], {n, 1, 100}]
PROG
(Maxima) a(n) := lsum(binomial(2*d, d)/(d+1), d, listify(divisors(n)));
makelist(a(n), n, 1, 40);
(Magma) [&+[Binomial(2*d, d)/(d+1): d in Divisors(n)]: n in [1..40]]; // Bruno Berselli, Feb 11 2014
(PARI) a(n) = sumdiv(n, d, binomial(2*d, d)/(d+1)); \\ Michel Marcus, May 20 2018
CROSSREFS
Cf. A000108.
Sequence in context: A129905 A143363 A216878 * A321227 A006081 A099511
KEYWORD
nonn
AUTHOR
Emanuele Munarini, Feb 11 2014
STATUS
approved