login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099511
Row sums of triangle A099510, so that a(n) = Sum_{k=0..n} coefficient of z^k in (1 + 2*z + z^2)^(n-[k/2]), where [k/2] is the integer floor of k/2.
6
1, 3, 6, 17, 45, 116, 305, 799, 2090, 5473, 14329, 37512, 98209, 257115, 673134, 1762289, 4613733, 12078908, 31622993, 82790071, 216747218, 567451585, 1485607537, 3889371024, 10182505537, 26658145587, 69791931222, 182717648081
OFFSET
0,2
FORMULA
G.f.: (1+x-x^2)/(1-2*x-x^2-2*x^3+x^4). a(n) = Sum_{k=0..n} binomial(2*n-2*[k/2], k).
PROG
(PARI) a(n)=sum(k=0, n, polcoeff((1+2*x+x^2+x*O(x^k))^(n-k\2), k))
CROSSREFS
Cf. A099510.
Sequence in context: A237670 A321227 A006081 * A204517 A307685 A360273
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 21 2004
STATUS
approved