OFFSET
0,3
LINKS
Harvey P. Dale, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: c(x)/(1-x^2), where c(x) is the g.f. of A000108.
a(n) ~ 2^(2*n+4) / (15*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Feb 01 2023
D-finite with recurrence (n+1)*a(n) +2*(-2*n+1)*a(n-1) +(-n-1)*a(n-2) +2*(2*n-1)*a(n-3)=0. - R. J. Mathar, Mar 12 2023
MAPLE
A360273 := proc(n)
add(A000108(n-2*k), k=0..n/2) ;
end proc:
seq(A360273(n), n=0..70) ; # R. J. Mathar, Mar 12 2023
MATHEMATICA
Table[Sum[CatalanNumber[n-2k], {k, 0, Floor[n/2]}], {n, 0, 30}] (* Harvey P. Dale, Sep 08 2024 *)
PROG
(PARI) a(n) = sum(k=0, n\2, binomial(2*(n-2*k), n-2*k)/(n-2*k+1));
(PARI) my(N=30, x='x+O('x^N)); Vec(2/((1-x^2)*(1+sqrt(1-4*x))))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Jan 31 2023
STATUS
approved