login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360273
a(n) = Sum_{k=0..floor(n/2)} Catalan(n-2*k).
2
1, 1, 3, 6, 17, 48, 149, 477, 1579, 5339, 18375, 64125, 226387, 807025, 2900827, 10501870, 38258497, 140146660, 515897197, 1907409850, 7080017617, 26373676870, 98562581257, 369433290520, 1388466728581, 5231379691972
OFFSET
0,3
LINKS
FORMULA
G.f.: c(x)/(1-x^2), where c(x) is the g.f. of A000108.
a(n) ~ 2^(2*n+4) / (15*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Feb 01 2023
D-finite with recurrence (n+1)*a(n) +2*(-2*n+1)*a(n-1) +(-n-1)*a(n-2) +2*(2*n-1)*a(n-3)=0. - R. J. Mathar, Mar 12 2023
MAPLE
A360273 := proc(n)
add(A000108(n-2*k), k=0..n/2) ;
end proc:
seq(A360273(n), n=0..70) ; # R. J. Mathar, Mar 12 2023
MATHEMATICA
Table[Sum[CatalanNumber[n-2k], {k, 0, Floor[n/2]}], {n, 0, 30}] (* Harvey P. Dale, Sep 08 2024 *)
PROG
(PARI) a(n) = sum(k=0, n\2, binomial(2*(n-2*k), n-2*k)/(n-2*k+1));
(PARI) my(N=30, x='x+O('x^N)); Vec(2/((1-x^2)*(1+sqrt(1-4*x))))
CROSSREFS
Cf. A000108.
Sequence in context: A099511 A204517 A307685 * A287901 A354878 A143093
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Jan 31 2023
STATUS
approved