login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360275
Number of unordered quadruples of self-avoiding paths with nodes that cover all vertices of a convex n-gon.
0
0, 0, 0, 0, 0, 105, 3780, 81900, 1386000, 20207880, 266666400, 3277354080, 38198160000, 427365818880, 4629059635200, 48842864179200, 504335346278400, 5114054709319680, 51064119467827200, 503151159589478400, 4900668252598272000, 47248486914198011904, 451429610841538560000
OFFSET
3,6
COMMENTS
The paths considered here cover at least 2 vertices. Although each path is self-avoiding, the different paths are allowed to intersect.
LINKS
Ivaylo Kortezov, Sets of Non-self-intersecting Paths Connecting the Vertices of a Convex Polygon, Mathematics and Informatics, Vol. 65, No. 6, 2022.
FORMULA
a(n) = (1/3)*n*(n-1)*(n-2)*(n-3)*2^(n-15)*(4^(n-4) - 4*3^(n-4) + 6*2^(n-4) - 4) for n != 4.
EXAMPLE
a(9) = 9!*3/(2!2!2!3!3!) = 3780 since we have to split the 9 vertices into three pairs and one triple, the order of the three pairs is irrelevant, and there are 3 ways of connecting the triple.
CROSSREFS
Cf. A001792, A332426 (unordered pairs of paths), A359404 (unordered triples of paths).
Sequence in context: A289952 A112490 A006361 * A221791 A210138 A075350
KEYWORD
nonn
AUTHOR
Ivaylo Kortezov, Feb 01 2023
STATUS
approved