login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360276
Number of unordered quadruples of self-avoiding paths with nodes that cover all vertices of a convex n-gon; one-node paths are allowed.
0
0, 0, 10, 105, 1015, 9625, 90972, 861420, 8191920, 78309000, 752317280, 7257522272, 70223986560, 680703296000, 6601793730560, 63984047339520, 619018056228864, 5972223901440000, 57415027394027520, 549677356175073280, 5238367168966328320, 49678823782558924800, 468783944069762252800
OFFSET
3,3
COMMENTS
Although each path is self-avoiding, the different paths are allowed to intersect.
LINKS
Ivaylo Kortezov, Sets of Non-self-intersecting Paths Connecting the Vertices of a Convex Polygon, Mathematics and Informatics, Vol. 65, No. 6, 2022.
FORMULA
a(n) = (1/3)*n*(n-1)*(n-2)*(n-3)*2^(n-15)*(4^(n-4) + 12*3^(n-4) + 54*2^(n-4) + 108) for n != 4.
EXAMPLE
a(6) = 6!/(2!2!2!2!)+6!*3/(3!3!) = 45+60 = 105; the first summand corresponds to the case of 2 two-node paths and 2 one-node paths; the second to the case of 1 three-node path and 3 one-node paths.
CROSSREFS
Cf. A001792, A359405 (unordered pairs of paths), A360021 (unordered triples of paths).
Sequence in context: A117832 A268763 A300850 * A210136 A068093 A260214
KEYWORD
nonn
AUTHOR
Ivaylo Kortezov, Feb 01 2023
STATUS
approved