OFFSET
0,5
COMMENTS
Row sums form absolute values of A078039. In general if T(n,k) = coefficient of z^k in (a + b*z + c*z^2)^(n-[k/2]), then the resulting number triangle will have the o.g.f.: ((1-a*x-c*x^2*y^2) + b*x*y)/((1-a*x-c*x^2*y^2)^2 - x*(b*x*y)^2).
FORMULA
G.f.: (1-x+x*y-x^2*y^2)/((1-x)^2-2*x^2*y^2+x^3*y^2+x^4*y^4).
EXAMPLE
Rows begin:
[1],
[1,1],
[1,2,1],
[1,3,3,2],
[1,4,6,7,1],
[1,5,10,16,6,3],
[1,6,15,30,19,16,1],
[1,7,21,50,45,51,10,4],
[1,8,28,77,90,126,45,30,1],
[1,9,36,112,161,266,141,126,15,5],...
and can be derived from coefficients of (1+z+z^2)^n:
[1],
[1,1,1],
[1,2,3,2,1],
[1,3,6,7,6,3,1],
[1,4,10,16,19,16,10,4,1],
[1,5,15,30,45,51,45,30,15,5,1],...
by shifting each column k down by [k/2] rows.
PROG
(PARI) T(n, k)=if(n<k || k<0, 0, polcoeff((1+z+z^2+z*O(z^k))^(n-k\2), k, z))
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Oct 20 2004
STATUS
approved