The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A321227 Number of connected multiset partitions with multiset density -1 of strongly normal multisets of size n. 2
 0, 1, 3, 6, 17, 43, 147, 458, 1729, 6445, 27011 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices. A multiset is normal if it spans an initial interval of positive integers, and strongly normal if in addition its multiplicities are weakly decreasing. LINKS EXAMPLE The a(1) = 1 through a(4) = 17 multiset partitions:   {{1}}  {{1,1}}    {{1,1,1}}      {{1,1,1,1}}          {{1,2}}    {{1,1,2}}      {{1,1,1,2}}          {{1},{1}}  {{1,2,3}}      {{1,1,2,2}}                     {{1},{1,1}}    {{1,1,2,3}}                     {{1},{1,2}}    {{1,2,3,4}}                     {{1},{1},{1}}  {{1},{1,1,1}}                                    {{1,1},{1,1}}                                    {{1},{1,1,2}}                                    {{1,1},{1,2}}                                    {{1},{1,2,2}}                                    {{1},{1,2,3}}                                    {{1,2},{1,3}}                                    {{2},{1,1,2}}                                    {{1},{1},{1,1}}                                    {{1},{1},{1,2}}                                    {{1},{2},{1,2}}                                    {{1},{1},{1},{1}} MATHEMATICA sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]]; mensity[c_]:=Total[(Length[Union[#]]-1&)/@c]-Length[Union@@c]; strnorm[n_]:=Flatten[MapIndexed[Table[#2, {#1}]&, #]]&/@IntegerPartitions[n]; Table[Sum[Length[Select[mps[m], And[mensity[#]==-1, Length[csm[#]]==1]&]], {m, strnorm[n]}], {n, 0, 8}] CROSSREFS Cf. A000272, A007716, A007718, A030019, A052888, A134954, A304867, A304887, A318697, A321155, A321228, A321229, A321231. Sequence in context: A143363 A216878 A237670 * A006081 A099511 A204517 Adjacent sequences:  A321224 A321225 A321226 * A321228 A321229 A321230 KEYWORD nonn,more AUTHOR Gus Wiseman, Oct 31 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 01:45 EST 2022. Contains 350473 sequences. (Running on oeis4.)