OFFSET
0,3
COMMENTS
The multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices.
A multiset is normal if it spans an initial interval of positive integers, and strongly normal if in addition its multiplicities are weakly decreasing.
EXAMPLE
The a(1) = 1 through a(4) = 17 multiset partitions:
{{1}} {{1,1}} {{1,1,1}} {{1,1,1,1}}
{{1,2}} {{1,1,2}} {{1,1,1,2}}
{{1},{1}} {{1,2,3}} {{1,1,2,2}}
{{1},{1,1}} {{1,1,2,3}}
{{1},{1,2}} {{1,2,3,4}}
{{1},{1},{1}} {{1},{1,1,1}}
{{1,1},{1,1}}
{{1},{1,1,2}}
{{1,1},{1,2}}
{{1},{1,2,2}}
{{1},{1,2,3}}
{{1,2},{1,3}}
{{2},{1,1,2}}
{{1},{1},{1,1}}
{{1},{1},{1,2}}
{{1},{2},{1,2}}
{{1},{1},{1},{1}}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
mensity[c_]:=Total[(Length[Union[#]]-1&)/@c]-Length[Union@@c];
strnorm[n_]:=Flatten[MapIndexed[Table[#2, {#1}]&, #]]&/@IntegerPartitions[n];
Table[Sum[Length[Select[mps[m], And[mensity[#]==-1, Length[csm[#]]==1]&]], {m, strnorm[n]}], {n, 0, 8}]
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Oct 31 2018
STATUS
approved