login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321227
Number of connected multiset partitions with multiset density -1 of strongly normal multisets of size n.
2
0, 1, 3, 6, 17, 43, 147, 458, 1729, 6445, 27011
OFFSET
0,3
COMMENTS
The multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices.
A multiset is normal if it spans an initial interval of positive integers, and strongly normal if in addition its multiplicities are weakly decreasing.
EXAMPLE
The a(1) = 1 through a(4) = 17 multiset partitions:
{{1}} {{1,1}} {{1,1,1}} {{1,1,1,1}}
{{1,2}} {{1,1,2}} {{1,1,1,2}}
{{1},{1}} {{1,2,3}} {{1,1,2,2}}
{{1},{1,1}} {{1,1,2,3}}
{{1},{1,2}} {{1,2,3,4}}
{{1},{1},{1}} {{1},{1,1,1}}
{{1,1},{1,1}}
{{1},{1,1,2}}
{{1,1},{1,2}}
{{1},{1,2,2}}
{{1},{1,2,3}}
{{1,2},{1,3}}
{{2},{1,1,2}}
{{1},{1},{1,1}}
{{1},{1},{1,2}}
{{1},{2},{1,2}}
{{1},{1},{1},{1}}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
mensity[c_]:=Total[(Length[Union[#]]-1&)/@c]-Length[Union@@c];
strnorm[n_]:=Flatten[MapIndexed[Table[#2, {#1}]&, #]]&/@IntegerPartitions[n];
Table[Sum[Length[Select[mps[m], And[mensity[#]==-1, Length[csm[#]]==1]&]], {m, strnorm[n]}], {n, 0, 8}]
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Oct 31 2018
STATUS
approved