login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A321229 Number of non-isomorphic connected weight-n multiset partitions with multiset density -1. 12
1, 1, 3, 6, 16, 37, 105, 279, 817, 2387, 7269 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices.

The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

LINKS

Table of n, a(n) for n=0..10.

EXAMPLE

Non-isomorphic representatives of the a(1) = 1 through a(5) = 37 multiset partitions:

  {{1}}  {{1,1}}    {{1,1,1}}      {{1,1,1,1}}        {{1,1,1,1,1}}

         {{1,2}}    {{1,2,2}}      {{1,1,2,2}}        {{1,1,2,2,2}}

         {{1},{1}}  {{1,2,3}}      {{1,2,2,2}}        {{1,2,2,2,2}}

                    {{1},{1,1}}    {{1,2,3,3}}        {{1,2,2,3,3}}

                    {{2},{1,2}}    {{1,2,3,4}}        {{1,2,3,3,3}}

                    {{1},{1},{1}}  {{1},{1,1,1}}      {{1,2,3,4,4}}

                                   {{1,1},{1,1}}      {{1,2,3,4,5}}

                                   {{1},{1,2,2}}      {{1},{1,1,1,1}}

                                   {{1,2},{2,2}}      {{1,1},{1,1,1}}

                                   {{1,3},{2,3}}      {{1,1},{1,2,2}}

                                   {{2},{1,2,2}}      {{1},{1,2,2,2}}

                                   {{3},{1,2,3}}      {{1,2},{2,2,2}}

                                   {{1},{1},{1,1}}    {{1,2},{2,3,3}}

                                   {{1},{2},{1,2}}    {{1,3},{2,3,3}}

                                   {{2},{2},{1,2}}    {{1,4},{2,3,4}}

                                   {{1},{1},{1},{1}}  {{2},{1,1,2,2}}

                                                      {{2},{1,2,2,2}}

                                                      {{2},{1,2,3,3}}

                                                      {{2,2},{1,2,2}}

                                                      {{3},{1,2,3,3}}

                                                      {{3,3},{1,2,3}}

                                                      {{4},{1,2,3,4}}

                                                      {{1},{1},{1,1,1}}

                                                      {{1},{1,1},{1,1}}

                                                      {{1},{1},{1,2,2}}

                                                      {{1},{1,2},{2,2}}

                                                      {{1},{2},{1,2,2}}

                                                      {{2},{1,2},{2,2}}

                                                      {{2},{1,3},{2,3}}

                                                      {{2},{2},{1,2,2}}

                                                      {{2},{3},{1,2,3}}

                                                      {{3},{1,3},{2,3}}

                                                      {{3},{3},{1,2,3}}

                                                      {{1},{1},{1},{1,1}}

                                                      {{1},{2},{2},{1,2}}

                                                      {{2},{2},{2},{1,2}}

                                                      {{1},{1},{1},{1},{1}}

CROSSREFS

Cf. A000272, A007716, A007718, A030019, A052888, A134954, A304867, A304887, A318697, A321155, A321227, A321228, A321231.

Sequence in context: A089406 A027852 A203068 * A114410 A190735 A096588

Adjacent sequences:  A321226 A321227 A321228 * A321230 A321231 A321232

KEYWORD

nonn,more

AUTHOR

Gus Wiseman, Oct 31 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 30 08:54 EDT 2022. Contains 354919 sequences. (Running on oeis4.)