login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321229
Number of non-isomorphic connected weight-n multiset partitions with multiset density -1.
12
1, 1, 3, 6, 16, 37, 105, 279, 817, 2387, 7269
OFFSET
0,3
COMMENTS
The multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
EXAMPLE
Non-isomorphic representatives of the a(1) = 1 through a(5) = 37 multiset partitions:
{{1}} {{1,1}} {{1,1,1}} {{1,1,1,1}} {{1,1,1,1,1}}
{{1,2}} {{1,2,2}} {{1,1,2,2}} {{1,1,2,2,2}}
{{1},{1}} {{1,2,3}} {{1,2,2,2}} {{1,2,2,2,2}}
{{1},{1,1}} {{1,2,3,3}} {{1,2,2,3,3}}
{{2},{1,2}} {{1,2,3,4}} {{1,2,3,3,3}}
{{1},{1},{1}} {{1},{1,1,1}} {{1,2,3,4,4}}
{{1,1},{1,1}} {{1,2,3,4,5}}
{{1},{1,2,2}} {{1},{1,1,1,1}}
{{1,2},{2,2}} {{1,1},{1,1,1}}
{{1,3},{2,3}} {{1,1},{1,2,2}}
{{2},{1,2,2}} {{1},{1,2,2,2}}
{{3},{1,2,3}} {{1,2},{2,2,2}}
{{1},{1},{1,1}} {{1,2},{2,3,3}}
{{1},{2},{1,2}} {{1,3},{2,3,3}}
{{2},{2},{1,2}} {{1,4},{2,3,4}}
{{1},{1},{1},{1}} {{2},{1,1,2,2}}
{{2},{1,2,2,2}}
{{2},{1,2,3,3}}
{{2,2},{1,2,2}}
{{3},{1,2,3,3}}
{{3,3},{1,2,3}}
{{4},{1,2,3,4}}
{{1},{1},{1,1,1}}
{{1},{1,1},{1,1}}
{{1},{1},{1,2,2}}
{{1},{1,2},{2,2}}
{{1},{2},{1,2,2}}
{{2},{1,2},{2,2}}
{{2},{1,3},{2,3}}
{{2},{2},{1,2,2}}
{{2},{3},{1,2,3}}
{{3},{1,3},{2,3}}
{{3},{3},{1,2,3}}
{{1},{1},{1},{1,1}}
{{1},{2},{2},{1,2}}
{{2},{2},{2},{1,2}}
{{1},{1},{1},{1},{1}}
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Oct 31 2018
STATUS
approved