login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216878
G.f. satisfies: A(x) = 1 / Product_{n>=1} (1 + x^n*A(x)) * (1 + x^n/A(x)) * (1-x^n).
0
1, -1, 1, -3, 6, -17, 43, -125, 348, -1029, 3020, -9116, 27567, -84620, 260949, -812053, 2539208, -7989121, 25244540, -80136851, 255325972, -816447638, 2618870068, -8425244209, 27176810469, -87879769383, 284813417885, -925013053556, 3010106492409, -9813119711706
OFFSET
0,4
FORMULA
G.f. satisfies: A(x) = 1 / Sum_{n>=1} (A(x)^n + x^n/A(x)^n) * x^(n*(n-1)/2) due to the Jacobi triple product identity.
EXAMPLE
G.f.: A(x) = 1 - x + x^2 - 3*x^3 + 6*x^4 - 17*x^5 + 43*x^6 - 125*x^7 +...
such that
1/A(x) = (1+x*A(x))*(1-x/A(x))*(1-x) * (1+x^2*A(x))*(1-x^2/A(x))*(1-x^2) * (1+x^3*A(x))*(1-x^3/A(x))*(1-x^3) * (1+x^4*A(x))*(1-x^4/A(x))*(1-x^4) *...
1/A(x) = (A(x) + x/A(x)) + (A(x)^2 + x^2/A(x)^2)*x + (A(x)^3 + x^3/A(x)^3)*x^3 + (A(x)^4 + x^4/A(x)^4)*x^6 + (A(x)^5 + x^5/A(x)^5)*x^10 +...
PROG
(PARI) {a(n)=local(A=1-x); for(i=1, n, A=1/prod(m=1, n, (1+x^m/A)*(1+x^m*A)*(1-x^m)+x*O(x^n))); polcoeff(A, n)}
(PARI) {a(n)=local(A=1-x); for(i=1, n, A=1/2*(A+1/sum(m=1, sqrtint(8*n+1), (A^m+x^m/A^m)*x^(m*(m-1)/2)+x*O(x^n)))); polcoeff(A, n)}
for(n=0, 21, print1(a(n), ", "))
CROSSREFS
Cf. A190791.
Sequence in context: A232771 A129905 A143363 * A237670 A321227 A006081
KEYWORD
sign
AUTHOR
Paul D. Hanna, Sep 18 2012
STATUS
approved