login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216879
G.f. satisfies: A(x) = sqrt( theta_3(x*A(x)) / theta_4(x*A(x)) ).
0
1, 2, 6, 24, 110, 540, 2772, 14704, 79974, 443594, 2499640, 14269320, 82346004, 479604748, 2815557264, 16643093712, 98974828886, 591742372068, 3554708076858, 21444913596408, 129870710693976, 789237890852160, 4811481299622276, 29417496447990096, 180337119342194820
OFFSET
0,2
COMMENTS
Here theta_3(x) = 1 + 2*Sum_{n>=1} x^(n^2) and theta_4(x) = 1 + 2*Sum_{n>=1} (-x)^(n^2) are Jacobi theta functions.
The radius of convergence r of g.f. A(x) is given by
r = 0.15335406881552899483841215094726329935743212998703... with
A(r) = 2.14877235788136654366723937779352044712735012012453...
such that G(y) = y*G'(y) = A(r) at y = r*A(r) = 0.3295229840394455820300...
where G(x) = sqrt(theta_3(x)/theta_4(x)).
Conjectured to be the number of permutations of length n+1 avoiding the partially ordered pattern (POP) {5>1, 1>2, 1>4} of length 5. That is, conjectured to be the number of length n+1 permutations having no subsequences of length 5 in which the fifth element is larger than the first element, which in turn is larger than the second and fourth elements. - Sergey Kitaev, Dec 13 2020
The conjecture was disproven. The numbers are actually A366706, which matches the first 9 entries. - Christian Bean, Jul 22 2024
LINKS
Christian Bean, Émile Nadeau, Jay Pantone, and Henning Ulfarsson, Permutations avoiding bipartite partially ordered patterns have a regular insertion encoding, The Electronic Journal of Combinatorics, Volume 31, Issue 3 (2024); arXiv preprint, arXiv:2312.07716 [math.CO], 2023.
Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019.
Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, The Electronic Journal of Combinatorics 26(3) (2019), P3.26.
FORMULA
G.f. satisfies the identities:
(1) A(x) = 1 / A(-x*A(x)^2).
(2) A(x) = eta(-x*A(x))^2 * eta(x^4*A(x)^4) / eta(x^2*A(x)^2)^3.
(3) A(x) = exp( 2*Sum_{n>=1} sigma(2*n-1) * (x*A(x))^(2*n-1) / (2*n-1) ).
(4) A(x) = 1 / Product_{n>=1} (1 + (x*A(x))^(2*n)) * (1 - (x*A(x))^(2*n-1))^2.
(5) A(x) = Product_{n>=1} (1 + (x*A(x))^(2*n-1)) * (1 + (x*A(x))^n).
(6) A(x) = Product_{n>=1} (1 + (x*A(x))^(2*n-1)) / (1 - (x*A(x))^(2*n-1)).
(7) A(x) = Product_{n>=1} (1 - (x*A(x))^(4*n-2)) / ((1 - (x*A(x))^(4*n-1))*(1 - (x*A(x))^(4*n-3)))^2.
(8) A(x) = 1/(1 - 2*q/(1+q - q^2*(1-q^2)/(1+q^3 - q^3*(1-q^4)/(1+q^5 - q^4*(1-q^6)/(1+q^7 - ...))))), a continued fraction, where q = x*A(x).
(9) A(x) = (1/x)*Series_Reversion( x*sqrt(theta_4(x)/theta_3(x)) ).
(10) A(x/G(x)) = G(x) where G(x) = sqrt(theta_3(x)/theta_4(x)) is the g.f. of A080054.
Special value: A(exp(-Pi)/2^(1/8)) = 2^(1/8).
a(n) = [x^n] ( theta_3(x) / theta_4(x) )^((n+1)/2) / (n+1).
a(n) ~ c * d^n / n^(3/2), where d = 6.52085730573545526010335599231748172235904166255252115709479430152403... and c = 0.6370998492207183978277090515469899143891211207560886906399176320450... - Vaclav Kotesovec, Nov 16 2023
EXAMPLE
G.f.: A(x) = 1 + 2*x + 6*x^2 + 24*x^3 + 110*x^4 + 540*x^5 + 2772*x^6 +...
such that, by definition, the g.f. satisfies:
A(x) = sqrt( (1 + 2*Sum_{n>=1} (x*A(x))^(n^2) ) / (1 + 2*Sum_{n>=1} (-x*A(x))^(n^2) ) ).
MATHEMATICA
InverseSeries[x Sqrt[EllipticTheta[4, 0, x]/EllipticTheta[3, 0, x]] + O[x]^26] // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Oct 01 2019 *)
(* Calculation of constants {d, c}: *) {1/r, s*Sqrt[EllipticTheta[3, 0, r*s] / (Pi*(6*EllipticTheta[3, 0, r*s] - r*s*(4*Derivative[0, 0, 1][EllipticTheta][3, 0, r*s] - r*s*Derivative[0, 0, 2][EllipticTheta][3, 0, r*s] + r*s^3*Derivative[0, 0, 2][EllipticTheta][4, 0, r*s])))]} /. FindRoot[{EllipticTheta[3, 0, r*s]/EllipticTheta[4, 0, r*s] == s^2, (r*(Derivative[0, 0, 1][EllipticTheta][3, 0, r*s] - s^2*Derivative[0, 0, 1][EllipticTheta][4, 0, r*s])) / (2*s*EllipticTheta[4, 0, r*s]) == 1}, {r, 1/6}, {s, 3/2}, WorkingPrecision -> 70] (* Vaclav Kotesovec, Nov 16 2023 *)
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=sqrt((1+2*sum(m=1, sqrtint(n)+1, (x*A)^(m^2)))/(1+2*sum(m=1, sqrtint(n)+1, (-x*A)^(m^2))))); polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=eta(-x*A)^2*eta(x^4*A^4)/eta(x^2*A^2)^3); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(2*sum(n=1, n, sigma(2*n-1)*(x*A)^(2*n-1)/(2*n-1)))); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/prod(m=1, n, (1+(x*A)^(2*m))*(1-(x*A)^(2*m-1))^2)); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=prod(m=1, n, (1+(x*A)^(2*m-1))*(1+(x*A)^m))); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=prod(m=1, n, (1+(x*A)^(2*m-1))/(1-(x*A)^(2*m-1)))); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=prod(m=1, n, (1-(x*A)^(4*m-2))/((1-(x*A)^(4*m-1))*(1-(x*A)^(4*m-3)))^2)); polcoeff(A, n)}
CROSSREFS
Cf. A080054.
Sequence in context: A214762 A141254 A366706 * A372527 A138020 A046646
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 18 2012
STATUS
approved