login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046646
a(n) = 2*binomial(3*n-3, n-1)/(2*n-1) for n >= 2, and a(1) = 1.
5
1, 2, 6, 24, 110, 546, 2856, 15504, 86526, 493350, 2861430, 16829280, 100134216, 601661144, 3645533040, 22249511328, 136657509918, 844061090670, 5239262085330, 32665844580600, 204480219795390, 1284624902435490
OFFSET
1,2
COMMENTS
Number of certain rooted planar maps.
LINKS
Daniel Birmajer, Juan B. Gil, Michael D. Weiner, Bounce statistics for rational lattice paths, arXiv:1707.09918 [math.CO], 2017, p. 10.
W. G. Brown, Enumeration of non-separable planar maps, Canad. J. Math., 15 (1963), 526-545.
W. G. Brown, Enumeration of non-separable planar maps [Annotated scanned copy]
FORMULA
From Emeric Deutsch, Mar 03 2004: (Start)
a(n) = 2*binomial(3*n-3, n-1)/(2*n-1) for n >= 2, and a(1) = 1.
a(n) = 2*A001764(n-1) for n >= 2. (End)
a(n) = (n+1) * A000139(n). - F. Chapoton, Feb 23 2024
G.f.: (1+g)/(1-g) where g*(1-g)^2 = x. - Mark van Hoeij, Nov 10 2011
MAPLE
alias(PS=ListTools:-PartialSums): A046646List := proc(m) local A, P, n;
A := [1, 2]; P := [2]; for n from 1 to m - 2 do P := PS(PS([op(P), P[-1]]));
A := [op(A), P[-1]] od; A end: A046646List(22); # Peter Luschny, Mar 26 2022
MATHEMATICA
Join[{1}, Table[(2*Binomial[3n-3, n-1])/(2n-1), {n, 2, 30}]] (* Harvey P. Dale, Oct 12 2013 *)
PROG
(Magma) [1] cat [2*Binomial(3*n-3, n-1)/(2*n-1): n in [2..30]]; // Vincenzo Librandi, Oct 13 2013
CROSSREFS
A diagonal of A046651.
Sequence in context: A216879 A372527 A138020 * A342284 A174195 A274378
KEYWORD
nonn,easy
EXTENSIONS
More terms from Emeric Deutsch, Mar 03 2004
New name using a formula of Emeric Deutsch by Peter Luschny, Feb 23 2024
STATUS
approved