login
A046645
a(n) = log_2(A046644(n)); also the 2-adic valuation of A046644(n).
20
0, 1, 1, 3, 1, 2, 1, 4, 3, 2, 1, 4, 1, 2, 2, 7, 1, 4, 1, 4, 2, 2, 1, 5, 3, 2, 4, 4, 1, 3, 1, 8, 2, 2, 2, 6, 1, 2, 2, 5, 1, 3, 1, 4, 4, 2, 1, 8, 3, 4, 2, 4, 1, 5, 2, 5, 2, 2, 1, 5, 1, 2, 4, 10, 2, 3, 1, 4, 2, 3, 1, 7, 1, 2, 4, 4, 2, 3, 1, 8, 7, 2, 1, 5, 2, 2, 2, 5, 1, 5, 2, 4, 2
OFFSET
1,4
COMMENTS
A268375 gives numbers n for which a(n) = A289617(n) = A005187(A001222(n)). - Antti Karttunen, Jul 08 2017
FORMULA
a(n) = A007814(A046644(n)). - Michel Marcus, Apr 16 2015
Additive with a(p^n) = A005187(n). - Antti Karttunen, Jul 08 2017
a(n) = A293447(A293442(n)). - Antti Karttunen, Nov 10 2017
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = Sum_{p prime} f(1/p) = 1.410258867603361890498..., where f(x) = -x + Sum_{k>=0} (2^(k+1)-1)*x^(2^k)/(1+x^(2^k)). - Amiram Eldar, Sep 29 2023
MATHEMATICA
f[p_, e_] := 2*e - DigitCount[2*e, 2, 1]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 28 2023 *)
PROG
(PARI)
A007814(n) = (valuation(n, 2));
A046643perA046644(n) = { my(c=1); if(1==n, c, fordiv(n, d, if((d>1)&&(d<n), c -= (A046643perA046644(d)*A046643perA046644(n/d)))); (c/2)); } \\ After the Maple-program given in A046643.
A046645(n) = A007814(denominator(A046643perA046644(n))); \\ Antti Karttunen, Jul 08 2017
(PARI)
A005187(n) = { my(s=n); while(n>>=1, s+=n); s; };
A046645(n) = vecsum(apply(e -> A005187(e), factorint(n)[, 2])); \\ A faster implementation. - Antti Karttunen, Jul 08 2017
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved