The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A293447 Fully additive with a(p^e) = e * A000225(PrimePi(p)), where PrimePi(n) = A000720(n) and A000225(n) = (2^n)-1. 5
 0, 1, 3, 2, 7, 4, 15, 3, 6, 8, 31, 5, 63, 16, 10, 4, 127, 7, 255, 9, 18, 32, 511, 6, 14, 64, 9, 17, 1023, 11, 2047, 5, 34, 128, 22, 8, 4095, 256, 66, 10, 8191, 19, 16383, 33, 13, 512, 32767, 7, 30, 15, 130, 65, 65535, 10, 38, 18, 258, 1024, 131071, 12, 262143, 2048, 21, 6, 70, 35, 524287, 129, 514, 23, 1048575, 9, 2097151, 4096, 17, 257, 46, 67, 4194303, 11, 12 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Original, equal definition: totally additive with a(p^e) = e * A005187(2^(PrimePi(p)-1)), where PrimePi(n) = A000720(n). LINKS Antti Karttunen, Table of n, a(n) for n = 1..8192 FORMULA Totally additive with a(p^e) = e * A005187(2^(PrimePi(p)-1)), where PrimePi(n) = A000720(n). a(1) = 0, and for n > 1, a(n) = A005187(A087207(n)) + a(A003557(n)). Other identities: For all n >= 1, a(A293442(n)) = A046645(n). For all n >= 2 and all k >= 0, a(n^k) = k*a(n). For all n >= 1, a(n) >= A048675(n) >= A331740(n) >= A331591(n). PROG (PARI) A005187(n) = { my(s=n); while(n>>=1, s+=n); s; }; \\ This function from Charles R Greathouse IV A293447(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2] * A005187(2^(primepi(f[k, 1])-1))); } (Scheme) (define (A293447 n) (cond ((= 1 n) 0) (else (+ (A005187 (A087207 n)) (A293447 (A003557 n)))))) ;; Alternatively: (define (A293447 n) (if (= 1 n) 0 (+ (A005187 (A000079 (+ -1 (A061395 n)))) (A293447 (/ n (A006530 n)))))) CROSSREFS Cf. A000225, A000720, A003557, A005187, A087207. Cf. also A046645, A048675, A293442, A331591, A331740. Sequence in context: A059029 A056434 A143292 * A324867 A265386 A075627 Adjacent sequences:  A293444 A293445 A293446 * A293448 A293449 A293450 KEYWORD nonn AUTHOR Antti Karttunen, Nov 09 2017 EXTENSIONS Definition simplified by Antti Karttunen, Feb 05 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 6 05:18 EDT 2021. Contains 343580 sequences. (Running on oeis4.)