login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293445
A multiplicative encoding (base-2 compressed) for the exponents of 3 obtained when using Shevelev's algorithm for computing A053446.
3
2, 2, 3, 12, 36, 3, 12, 24, 6, 48, 12, 20736, 82944, 12, 18, 864, 248832, 6, 20, 19906560, 59719680, 80, 8640, 720, 25920, 34560, 5, 80, 103195607040, 240, 480, 622080, 137594142720, 138240, 20, 59440669655040, 138240, 20, 14929920, 29859840, 240, 59719680, 8640, 720, 414720, 8640, 540, 447897600, 960, 46080, 34560, 59719680, 295814814232058265600, 5, 80
OFFSET
1,1
LINKS
FORMULA
A048675(a(n)) = A053446(n).
EXAMPLE
A001651(5) = 7 as 7 is the fifth number not divisible by 3. According to the algorithm described in the comment of A053446 we have in the form of a "finite continued fraction"
1 + 14
------ + 7
3^1
---------- + 14
3^1
----------------- + 7
3^2
---------------------- = 1
3^2
Cumulatively multiplying (with A019565) together the prime-numbers corresponding to 1-bits in the binary expansions of the exponents of 3 in the denominators (that are 1, 1, 2, 2, in binary 1, 1, 10, 10, with 1's in bit-positions 0 and 1), yields prime(0+1) * prime(0+1) * prime(1+1) * prime(1+1) = 2^2 * 3^2 = 36, thus a(5) = 36.
(Adapted from Vladimir Shevelev's explanation in A053446.)
Another example: A001651(19) = 28 as 28 is the 19th number not divisible by 3. (1 + 28) is not a multiple of 3, so we start with (1 + 2*28) = 1+56 = 57 and proceed as:
1 + 56
------ + 56 [that is, (57/3) + 56 = 75]
3^1
---------- + 56 [that is, (75/3) + 56 = 81]
3^1
----------------- = 1 [that is, (81/81) = 1]
3^4
So we obtained exponents 1, 1, 4 (in binary "1", "1" and "100") where the 1-bits are in positions 0, 0 and 2. We form a product prime(0+1) * prime(0+1) * prime(2+1) = 2*2*5, thus a(19) = 20.
PROG
(Scheme)
(define (A293445 n) (define (next_one k m) (if (zero? (modulo (+ k m) 3)) (+ k m) (+ k m m))) (let* ((u (A001651 n)) (x_init (next_one 1 u))) (let loop ((x x_init) (z (A019565 (A007949 x_init)))) (let ((r (A038502 x))) (if (= 1 r) z (let ((x_next (next_one r u))) (loop x_next (* z (A019565 (A007949 x_next))))))))))
(define (A001651 n) (let ((x (- n 1))) (if (even? x) (+ 1 (* 3 (/ x 2))) (- (* 3 (/ (+ x 1) 2)) 1))))
(define (A038500 n) (A000244 (A007949 n)))
(define (A038502 n) (/ n (A038500 n)))
CROSSREFS
Cf. A293446 (restricted growth transform of this sequence).
Cf. also A292265.
Sequence in context: A375218 A335942 A240133 * A126339 A268725 A153929
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 09 2017
STATUS
approved