

A046642


Numbers k such that k and number of divisors d(k) are relatively prime.


18



1, 3, 4, 5, 7, 11, 13, 15, 16, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 55, 57, 59, 61, 64, 65, 67, 69, 71, 73, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 100, 101, 103, 105, 107, 109, 111, 113, 115, 119, 121, 123, 125, 127, 129, 131
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Numbers k such that tau(k)^phi(k) == 1 (mod k), where tau(k) is the number of divisors of k (A000005) and phi(k) is the Euler phi function (A000010).  Michel Lagneau, Nov 20 2012
Density is at least 4/Pi^2 = 0.405... since A056911 is a subsequence, and at most 1/2 since all even numbers in this sequence are squares. The true value seems to be around 0.4504.  Charles R Greathouse IV, Mar 27 2013
They are called antitau numbers by Zelinsky (see link) and their density is at least 3/Pi^2 (theorem 57 page 15).  Michel Marcus, May 31 2015
Spiro (1981) proved that the number of terms of this sequence that do not exceed x is c * x + O(sqrt(x)*log(x)^3), where 0 < c < 1 is the asymptotic density of this sequence.
The odd numbers whose number of divisors is a power of 2 (the odd terms of A036537) are terms of this sequence. Their asymptotic density is A327839/A076214 = 0.4212451116... which is a better lower bound than 4/Pi^2 for the asymptotic density of this sequence.
A better upper limit than 0.5 can be obtained by considering the subsequence of odd numbers whose 3adic valuation is not of the form 3*k1 (i.e., odd numbers without those k with gcd(k, tau(k)) = 3), whose asymptotic density is 6/13 = 0.46153...
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 5, 49, 459, 4535, 45145, 450710, 4504999, 45043234, 450411577, 4504050401, ... (End)


LINKS



FORMULA



MATHEMATICA



PROG

(Haskell)
a046642 n = a046642_list !! (n1)
a046642_list = map (+ 1) $ elemIndices 1 a009191_list


CROSSREFS



KEYWORD

nonn,nice,easy


AUTHOR



STATUS

approved



